Sổ tay cá nhân

Tạo bởi: dan-nguyen
Danh sách câu hỏi trong sổ
0
phiếu
0đáp án
5K lượt xem

             Phương pháp đổi biến số của nguyên hàm
Cho hàm số $u = u\left( x \right)$có đạo hàm liên tục trên $K$ và hàm số $y = f\left( u \right)$liên tục sao cho $f\left[ {u\left( x \right)} \right]$ xác định trên $K$. Khi đó nếu $F$ là một nguyên hàm của $f$, tức là
$\int {f(u)du = F(u) + C} $  thì:
$\int {f\left[ {u\left( x \right)} \right]} u'\left( x \right)dx = F\left[ {u\left( x \right)} \right] + C$ 

Phương pháp đổi biến số của nguyên hàm

Phương pháp đổi biến số của nguyên hàmCho hàm số $u = u\left( x \right)$có đạo hàm liên tục trên $K$ và hàm số $y = f\left( u \right)$liên tục sao cho $f\left[ {u\left( x \right)} \right]$ xác định trên $K$. Khi đó nếu $F$ là một nguyên...