Chứng minh rằng với mọi $a_1,a_2,...,a_n>0$ và với mọi $x_1,x_2,...,x_n\in \mathbb{R}$.
Ta có bất đẳng thức sau:
$\frac{1}{n-1}(x_1+x_2+...+x_n)^2\leq (\frac{a_1^{m+1}}{S-a_1}+...+\frac{a_n^{m+1}}{S-a_n})(\frac{x_1^2}{a_1^m}+\frac{x_2^2}{a_2^m}+...+\frac{x_n^2}{a_n^m})$
Với mọi $m,n\in \mathbb{N}; m\geq2, S=a_1+a_2+...+a_n$