Tạo bởi: duong-yen-linh
Danh sách câu hỏi trong sổ
0
phiếu
0đáp án
10K lượt xem

CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN KHÁC


Tiếp chuyên đề: "Phương trình nghiệm nguyên dạng đa thức"

Các dạng phương trình nghiệm nguyên khác:
1. Phương trình dạng phân thức
2. Phương trình mũ
3. Phương trình vô tỉ
4. Hệ phương trình nghiệm nguyên
5. Điều kiện để phương trình có nghiệm nguyên

1. Phương trình dạng phân thức
Ví dụ 1:

Tìm các nghiệm nguyên dương của phương trình:
               $\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}$
Giải:
Nhân hai vế của phương trình với 6xy:
                   $6y + 6x + 1 = xy$
Đưa về phương trình ước số:
      $x(y - 6) - 6(y - 6) = 37$
$ \Leftrightarrow (x - 6)(y - 6) = 37$
Do vai trò bình đẳng của $x$ và $y$, giả sử $x \geqslant y \geqslant 1$, thế thì $x - 6 \geqslant y - 6 \geqslant  - 5$.
Chỉ có một trường hợp:
               $\left\{ \begin{array}
  x - 6 = 37  \\
  y - 6 = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x = 43  \\
  y = 7  \\
\end{array}  \right.$
Đáp số:  $(43 ; 7), (7 ; 43)$

Ví dụ 2:
Tìm các số nguyên $x$ sao cho $\frac{{x - 17}}{{x - 9}}$ là bình phương của một phân số
Giải:
Giải sử $\frac{{x - 17}}{{x - 9}} = {\left( {\frac{a}{b}} \right)^2}$ với $a \in \mathbb{N},b \in {\mathbb{N}^*}$.
Xét $a = 0$ thì $x = 17$
Xét $a \ne 0$. Không mất tính tổng quát, giả sử $(a, b) = 1$. Do $({a^2},{b^2}) = 1$ nên:
     $x - 17 = {a^2}k$              (1)
     $x - 9 = {b^2}k$                (2)   $k$ nguyên
Từ (1) và (2) suy ra:
     $(x - 9) - (x - 17) = ({b^2} - {a^2})k$
     $8 = (b + a)(b - a)k$
Ta thấy $b + a$ và $b – a$ là ước của 8. Chú ý rằng $(b + a) – (b – a) = 2^a$ nên $b + a$ và $b – a$ cùng tính chẵn lẻ. Ta lại có $b + a > b – a$ và $b + a > 0$. Có các trường hợp:
$(b+a,b-a)=(4,2),(4,-2),(2,-2)(2,-4)$
$\Rightarrow k\in \{1,-1,-2,-1\} $
$ \Rightarrow b\in\{3,1,0,-1\}$  loại 2 trường hợp 0 và $-1$
$\Rightarrow  x=18$ hoặc $x=8$  
Vậy có ba đáp số:
$x = 17$ thì $\frac{{17 - 17}}{{17 - 9}} = \frac{0}{8} = {0^2}$
$x = 18$ thì $\frac{{18 - 17}}{{18 - 9}} = \frac{1}{9} = {\left( {\frac{1}{3}} \right)^2}$
$x = 8$ thì $\frac{{8 - 17}}{{8 - 9}} = 9 = {3^2}$

2. Phương trình mũ
Ví dụ 3:

Tìm các số tự nhiên x và các số nguyên y sao cho:
                    ${2^x} + 3 = {y^2}$
Giải:
Lần lượt xét các giá trị tự nhiên của $x$:
Nếu $x = 0$ thì ${y^2} = 4$ nên $y = \pm 2$
Nếu $x = 1$ thì ${y^2} = 5$, không có nghiệm nguyên
Nếu $x \geqslant 2$ thì ${2^x} \vdots 4$, do đó vế trái chia cho 4 dư 3, còn $y$ lẻ nên vế phải chia cho 4 dư 1. Mâu thuẫn.
Kết luận: Nghiệm của phương trình là (0 ; 2), (0 ; $ - $2)

Ví dụ 4:
Giải phương trình với nghiệm nguyên dương:
                                 ${2^x} + 57 = {y^2}$            (1)
Giải:
Xét hai trường hợp:
a)    $x$ lẻ. Đặt $x = 2n + 1 (n \in \mathbb{N})$. Ta có:
${2^x} = {2^{2n + 1}} = {2.4^n} = 2{(3 + 1)^n} = 2(BS3 + 1) = BS3 + 2$
Khi đó vế trái của (1) là số chia cho 3 dư 2, còn vế phải là số chính phương chia cho 3 không dư 2, loại.
b)    $x$ chẵn. Đặt $x = 2n $$(n \in {\mathbb{N}^*})$. Ta có:
$\begin{array}
  {y^2} - {2^{2n}} = 57  \\
\Leftrightarrow (y + {2^n})(y - {2^n}) = 3.19  \\
\end{array} $
Ta thấy $y + {2^n}$ > 0 nên $y - {2^n}$ > 0 và $y + {2^n}$ > $y - {2^n}$
Do đó có các trường hợp:
($y + {2^n}$,$y - {2^n}$)$=(57,1),(19,3)$
Nên $(x,y)=(6,11)$  (1 trường hợp bị loại)
Ta có: ${2^6} + 57 = {11^2}$
Kết luận: nghiệm của phương trình là (6 ; 11)

Ví dụ 5:
Giải phương trình với nghiệm tự nhiên:
       ${2^x} + {2^y} + {2^z} = 1024$     (1)     với $x \leqslant y \leqslant z$
Giải:
Chia hai vế của (1) cho ${2^x} \ne 0$ ta được:
       $1 + {2^{y - x}} + {2^{z - x}} = {2^{10 - x}}$                 (2)
Do ${2^{10 - x}}$ > 1 nên ${2^{10 - x}}$ là bội của 2.
Ta lại có $z > x$, vì nếu $z = x$ thì  $x = y = z$, khi đó (2) trở thành $1 + {2^0} + {2^0} = BS2$, loại.
Do đó ${2^{y - x}}$ là bội của 2.
Suy ra $1 + {2^{y - x}}$ là bội của 2. Do đó ${2^{y - x}}$ = 1, vậy y = x.
Thay vào (2):
                       $\begin{array}
  1 + 1 + {2^{z - x}} = {2^{10 - x}}  \\
   \Leftrightarrow 2 + {2^{z - x}} = {2^{10 - x}}  \\
   \Leftrightarrow 2(1 + {2^{z - x - 1}}) = {2^{10 - x}}  \\
   \Leftrightarrow 1 + {2^{z - x - 1}} = {2^{9 - x}}  \\
\end{array} $
Do  ${2^{9 - x}}$ > 1 nên ${2^{9 - x}}$ là bội của 2. Do đó ${2^{z - x - 1}}$ = 1 và 2 = ${2^{9 - x}}$.
Từ đó $x = 8; y = 9; z = 9.$

3. Phương trình vô tỉ
Ví dụ 6:

Tìm các nghiệm nguyên của phương trình:
                        $y = \sqrt {x + 2\sqrt {x - 1} }  + \sqrt {x - 2\sqrt {x - 1} } $
Giải:
Điều kiện: $x \geqslant 1$
$y = \sqrt {(x - 1) + 1 + 2\sqrt {x - 1} }  + \sqrt {(x - 1) + 1 - 2\sqrt {x - 1} } $
   $ = |\sqrt {x - 1}  + 1| + |\sqrt {x - 1}  - 1|$
   $ = \sqrt {x - 1}  + 1 + |\sqrt {x - 1}  - 1|$
Xét hai trường hợp:
a)    Với $x = 1$ thì $y =2.$
b)    Với $x \geqslant 2$ thì $y = \sqrt {x - 1}  + 1 + \sqrt {x - 1}  - 1 = 2\sqrt {x - 1} $
Do đó: ${y^2} = 4(x - 1)$. Do $x \geqslant 2$nên có thể đặt $x – 1$ = ${t^2}$ với $t$ nguyên dương.
Ta có: $\left\{ \begin{array}
  x = {t^2} + 1  \\
  y = 2t  \\
\end{array}  \right.$
Kếtt luận: nghiệm của phương trình là: (1 ; 2), (${t^2} + 1$ ; 2t) với $t$ là số nguyên dương tùy ý.

Ví dụ 7:
Tìm các nghiệm nguyên của phương trình:
             $\sqrt {x + \sqrt {x + \sqrt {x + \sqrt x } } }  = y$
Giải:
Ta có: $x \geqslant 0,y \geqslant 0$
Bình phương hai vế rồi chuyển vế:
$\sqrt {x + \sqrt {x + \sqrt x } }  = {y^2} - x = k(k \in \mathbb{N})$
Bình phương hai vế rồi chuyển vế:
$\sqrt {x + \sqrt x }  = {k^2} - x = m(m \in \mathbb{N})$
Bình phương hai vế:
$x + \sqrt x  = {m^2}$
Ta biết rằng với $x$ nguyên thì $\sqrt x $ hoặc là số nguyên hoặc là số vô tỉ.
Do $x + \sqrt x  = {m^2}$ $(m \in \mathbb{N})$nên $\sqrt x $ không là số vô tỉ. Do đó $\sqrt x $ là số nguyên và là số tự nhiên.
Ta có: $\sqrt x (\sqrt x  + 1) = {m^2}$
Hai số tự nhiên liên tiếp $\sqrt x $ và $\sqrt x  + 1$ có tích là số chính phương nên số nhỏ bằng 0:  $\sqrt x $ = 0
Suy ra: $x = 0; y = 0$ thỏa mãn phương trình đã cho.
Nghiệm của phương trình là $(0 ; 0)$

Ví dụ 8:
Tìm các nghiệm nguyên của phương trình:
                        $\sqrt x  + \sqrt y  = \sqrt {1980} $             (1)
Giải:
                          $\sqrt x  = \sqrt {1980}  - \sqrt y $           (2)
Với điều kiện $0 \leqslant x,y \leqslant 1980$:
$(2) \Leftrightarrow x = 1980 + y - 2\sqrt {1980y} $
     $ \Leftrightarrow x = 1980 + y - 12\sqrt {55y} $
Do $x, y$ nguyên nên $12\sqrt {55y} $ nguyên.
Ta biết rằng với $y$ nguyên thì$\sqrt {55y} $ hoặc là số nguyên hoặc là số vô tỉ.
Do đó $\sqrt {55y} $ là số nguyên, tức là $55y$ là số chính phương:  $11.5.y = {k^2}$.
Do đó: $y = 11.5.{a^2} = 55{a^2}$ với $a \in \mathbb{N}$
Tương tự: $x = $$55{b^2}$ với $b \in \mathbb{N}$
Thay vào (1):
        $\begin{array}
  a\sqrt {55}  + b\sqrt {55}  = 6\sqrt {55}   \\
\Leftrightarrow a + b = 6  \\
\end{array} $
Giả sử $y \leqslant x$ thì $a \leqslant b$. Ta có:
$(a,b)=(0,6),(1,5),(2,4),(3,3)$
Nên $(x,y)=(0,1980),(55,1375),(220,880),(495,495)$
Có 7 đáp số: $(0 ; 1980), (1980 ; 0), (55 ; 1375), (1375 ; 55), (220 ; 880), (880 ; 220),  (495 ; 495)$

4. Hệ phương trình nghiệm nguyên
Ví dụ 9:

Tìm các nghiệm nguyên của hệ phương trình:
               $\left\{ \begin{array}
  x + y + z = 3  \\
  {x^3} + {y^3} + {z^3} = 3  \\
\end{array}  \right.$
Giải:
Ta có hằng đẳng thức:
${(x + y + z)^3} - ({x^3} + {y^3} + {z^3}) = 3(x + y)(y + z)(z + x)$
Nên : $27 - 3 = 3(x + y)(y + z)(z + x)$
     $ \Leftrightarrow 8 = (x + y)(y + z)(x + z)$
Đặt $x + y = c, y + z = a, z + x = b.$
Ta có: $abc = 8$ $ \Rightarrow a,b,c \in \{  \pm 1, \pm 2, \pm 4, \pm 8\} $
Giả sử $x \leqslant y \leqslant z$ thì $a \geqslant b \geqslant c$.
Ta có: $a + b + c = 2(x + y + z) = 6$ nên $a \geqslant 2$
Với $a = 2$ ta có $\left\{ \begin{array}
b + c = 4  \\
bc = 4  \\
\end{array}  \right.$
Suy ra: $b = c = 2$
Ta được: $x = y = z = 1$
Với $a = 4$ ta có $\left\{ \begin{array}
b + c = 2  \\
bc = 2  \\
\end{array}  \right.$
Không có nghiệm nguyên.
Với $a = 8$ ta có $\left\{ \begin{array}
b + c =  - 2  \\
bc = 1  \\
\end{array}  \right.$
Suy ra: $b = c = -1$
Ta được: $x = y = 4; z = - 5$
Đáp số: $(1 ; 1 ; 1), (4 ; 4 ;  -5), (4 ; - 5 ; 4), (-5 ; 4 ; 4)$

5. Điều kiện để phương trình có nghiệm nguyên
Ví dụ 10:

Tìm các số thực $a$ để các nghiệm của phương trình sau đếu là số nguyên:
                      ${x^2} - ax + (a + 2) = 0$                   (1)
Giải:
Gọi ${x_1},{x_2}$ là nghiệm nguyên của (1). Theo định lý Viete:
                 $\left\{ \begin{array}
  {x_1} + {x_2} = a  \\
  {x_1}{x_2} = a + 2  \\
\end{array}  \right.$
Do đó:
$\begin{array}
  {x_1}{x_2} - ({x_1} + {x_2}) = 2  \\
   \Leftrightarrow {x_1}({x_2} - 1) - ({x_2} - 1) = 3  \\
   \Leftrightarrow ({x_1} - 1)({x_2} - 2) = 3  \\
\end{array} $
${x_1} - 1$ và ${x_2} - 2$ là ước của 3. Giả sử ${x_1} \geqslant {x_2}$ thì ${x_1} - 1$ $ \geqslant $ ${x_2} - 2$. Ta có hai trường hợp:
a)   $\left\{ \begin{array}
  {x_1} - 1 = 3  \\
  {x_2} - 1 = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x_1} = 4  \\
  {x_2} = 2  \\
\end{array}  \right.$
Khi đó $a = 6$
b)   $\left\{ \begin{array}
  {x_1} - 1 =  - 1  \\
  {x_2} - 1 =  - 3  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x_1} = 0  \\
  {x_2} =  - 2  \\
\end{array}  \right.$
Khi đó $a = -2 $

Bài tập rèn luyện:
Bài 1:
   
Tìm các nghiệm nguyên dương của hệ phương trình :
                $\left\{ \begin{array}
{x^3} + {y^3} = {z^2} \\
x + y = z \\
\end{array}  \right. $  
Hướng dẫn:
Khử $z$ đưa đến phương trình : ${y^2} - (x + 1)y + {x^2} - x = 0$
Xem đây là phương trình bậc 2, biến $y$, từ điều kiện tồn tại nghiệm ta suy ra $x = 1$ hoặc $x = 2$
Đáp số: $(x; y; z) = (1; 2; 3) , (2; 1; 3) , (2; 2; 4)$

Bài 2:   
Tìm $x \in \mathbb{N}:\sqrt {x + 2\sqrt {x + ... + 2\sqrt {x + 2\sqrt {3x} } } }  = x$
Hướng dẫn:
Đáp số : $x = 0$ hoặc $x = 3$
Xét các trường hợp của x và đánh giá hai vế

Bài 3:   
Tìm tất cả các cặp số nguyên dương $(a, b)$ sao cho $\frac{{{a^2} - 2}}{{ab + 2}}$ là số nguyên
Hướng dẫn:
Từ giả thiết suy ra
        $2(a + b) \vdots (ab + 2) \Rightarrow 2(a + b) = k(ab + 2)$                      (1)
Từ (1) chứng tỏ $k = 1$ suy ra $a = 4, b = 3$
Đáp số : $(a; b) = (4; 3) $

Bài 4:   
Tìm các số tự nhiên $x$ sao cho: ${2^x} + {3^x} = 35$
Hướng dẫn:
Thế $x = 0, 1, 2, 3$ vào phương trình.
Với $x > 3$, phương trình vô nghiệm.
Đáp số:  $x = 3$

CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN KHÁC

CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN KHÁC Tiếp chuyên đề: "Phương trình nghiệm nguyên dạng đa thức" Các dạng phương trình nghiệm nguyên khác: 1. Phương trình dạng phân thức 2. Phương trình mũ 3. Phương trình vô tỉ 4. Hệ phương trình nghiệm...
0
phiếu
0đáp án
11K lượt xem

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN III


PHƯƠNG PHÁP 7: DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG
1. Sử dụng tính chất về chia hết của số chính phương

Ví dụ 1:
Tìm các số nguyên $x$ để $9x + 5$ là tích của hai số nguyên liên tiếp
Giải:
Cách 1: Giải sử $9x + 5 = n(n + 1)$ với $n$ nguyên thì:
$36x + 20 = $$4{n^2} + 4n$
$ \Rightarrow 36x + 21 = 4{n^2} + 4n + 1$
$ \Rightarrow 3(12x + 7) = {(2n + 1)^2}$
Số chính phương ${(2n + 1)^2}$ chia hết cho 3 nên cũng chia hết cho 9. Ta lại có $12x + 7$ không chia hết cho 3 nên $3(12x + 7)$ không chi hết cho 9.
Mâu thuẫn trên chứng tỏ không tồn tại số nguyên $x$ nào để $9x + 5 = n(n + 1).$
Cách 2: Giả sử $9x + 5 = n(n + 1)$ với $n$ nguyên
Biến đổi ${n^2} + n - 9x - 5 = 0$
Để phương trình bậc hai đối với $n$ có nghiệm nguyên, điều kiện cần là $\vartriangle $ là số chính phương.
Nhưng $\Delta = 1 + 4(9x + 5) = 36x + 21$ chi hết cho 3 nhưng không chia hết cho 9 nên không là số chính phương.
Vậy không tồn tại số nguyên $n$ nào để $9x + 5 = n(n + 1)$, tức là không tồn tại số nguyên $x$ để $9x + 5$ là tích của hai số nguyên liên tiếp.

2. Tạo ra bình phương đúng:
Ví dụ 2:

Tìm các nghiệm nguyên của phương trình:
                   $2{x^2} + 4x = 19 - 3{y^2}$
Giải :
$2{x^2} + 4x + 2 = 21 - 3{y^2}$
$ \Leftrightarrow 2{(x + 1)^2} = 3(7 - {y^2})$
Ta thấy $3(7 - {y^2}) \vdots 2 \Rightarrow 7 - {y^2} \vdots 2 \Rightarrow $y lẻ
Ta lại có $7 - {y^2}  \geqslant  0$ nên chỉ có thể ${y^2} = 1$
Khi đó (2) có dạng: $2{(x + 1)^2} = 18$
Ta được: $x + 1 = \pm 3$, do đó: ${x_1} = 2;{x_2} =  - 4$
Các cặp số $(2 ; 1), (2 ; -1), (-4 ; 1), (-4 ; -1)$ thỏa mãn (2) nên là nghiệm của phương trình đã cho.

3. Xét các số chính phương liên tiếp:
Ví dụ 3:

Chứng minh rằng với mọi số nguyên k cho trước, không tồn tại số nguyên dương $x$ sao cho:
             $x(x + 1) = k(k + 2)$
Giải:
Giả sử $x(x + 1) = k(k + 2)$với k nguyên, $x$ nguyên dương.
Ta có:
      ${x^2} + x = {k^2} + 2k$
 $ \Rightarrow {x^2} + x + 1 = {k^2} + 2k + 1 = {(k + 1)^2}$
Do $x > 0$ nên ${x^2} < {x^2} + x + 1 = {(k + 1)^2}$                (1)
Cũng do $x > 0$ nên
${(k + 1)^2} = {x^2} + x + 1 < {x^2} + 2x + 1 = {(x + 1)^2}$         (2)
Từ (1) và (2) suy ra:
${x^2} < {(k + 1)^2} < {(x + 1)^2}$ vô lý
Vậy không tồn tại số nguyên dương $x$ để $x(x + 1) = k(k + 2)$

Ví dụ 4:
Tìm các số nguyên $x$ để biểu thức sau là một số chính phương:
          ${x^4} + 2{x^3} + 2{x^2} + x + 3$
Giải:
Đặt ${x^4} + 2{x^3} + 2{x^2} + x + 3$= ${y^2}$  (1) với $y \in \mathbb{N}$
Ta thấy:
$\begin{array}
{y^2} = ({x^4} + 2{x^3} + {x^2}) + ({x^2} + x + 3)  \\
{y^2} = {({x^2} + x)^2} + ({x^2} + x + 3)  \\
\end{array} $
Ta sẽ chứng minh ${a^2} < {y^2} < {(a + 2)^2}$ với a = ${x^2} + x$
Thật vậy:
$\begin{array}
  {y^2} - {a^2} = {x^2} + x + 3 = {(x + \frac{1}{2})^2} + \frac{{11}}{4} > 0  \\
  {(a + 2)^2} - {y^2} = {({x^2} + x + 2)^2} - ({x^4} + 2{x^3} + 2{x^2} + x + 3)  \\
\end{array} $
$\begin{array}
= 3{x^2} + 3x + 1  \\
= 3{(x + \frac{1}{2})^2} + \frac{1}{4} > 0  \\
\end{array} $
Do ${a^2} < {y^2} < {(a + 2)^2}$ nên ${y^2} = {(a + 1)^2}$
$\begin{array}
\Leftrightarrow {x^4} + 2{x^3} + 2{x^2} + x + 3 = {({x^2} + x + 1)^2}  \\
\Leftrightarrow {x^2} + x - 2 = 0  \\
\Leftrightarrow \left[ \begin{array}
  x = 1  \\
  x =  - 2  \\
\end{array}  \right.  \\
\end{array} $
Với $x = 1$ hoặc $x = -2$ biểu thức đã cho bằng $9 = {3^2}$

4. Sử dụng tính chất: nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đếu là số chính phương
Ví dụ 5:

Giải phương trình với nghiệm nguyên dương:
                 $xy = {z^2}$             (1)
Giải:
Trước hết ta có thể giả sử $(x , y , z) = 1$. Thật vậy nếu bộ ba số ${x_o},{y_o},{z_o}$ thỏa mãn (1) và có ƯCLN bằng $d$, giả sử ${x_o} = d{x_1},{y_o} = d{y_1},{z_o} = d{z_1}$ thì ${x_1},{y_1},{z_1}$ cũng là nghiệm của (1).
Với $(x , y , z) = 1$ thì $x, y, z$ đôi một nguyên tố cùng nhau, vì nếu hai trong ba số $x, y, z$ có ước chung là $d$ thì số còn lại cũng chia hết cho $d$.
Ta có ${z^2} = xy$ mà (x, y) = 1 nên $x = {a^2},y = {b^2}$ với $a, b \in {\mathbb{N}^*}$
Suy ra: ${z^2} = xy = {(ab)^2}$ do đó, $z = ab$
Như vậy: $\left\{ \begin{array}
  x = t{a^2}  \\
  y = t{b^2}  \\
  z = tab  \\
\end{array}  \right.$ với $t$ là số nguyên dương tùy ý.
Đảo lại, hiển nhiên các số $x, y, z$ có dạng trên thỏa mãn (1)
Công thức trên cho ta các nghiệm nguyên dương của (1)

5. Sử dụng tính chất: nếu hai số nguyên liên tiếp có tích là một số chính phương thí một trong hai số nguyên liên tiếp đó bằng 0
Ví dụ 6:

Tìm các nghiệm nguyên của phương trình:
                ${x^2} + xy + {y^2} = {x^2}{y^2}$                    (1)
Giải:
Thêm $xy$ vào hai vế:
      ${x^2} + 2xy + {y^2} = {x^2}{y^2} + xy$
$ \Leftrightarrow {(x + y)^2} = xy(xy + 1)$                           (2)
Ta thấy $xy$ và $xy + 1$ là hai số nguyên liên tiếp, có tích là một số chính phương nên tồn tại một số bằng 0.
Xét $xy = 0$. Từ (1) có ${x^2} + {y^2} = 0$ nên x = y = 0
Xét $xy + 1 = 0$. Ta có $xy = -1$ nên $(x , y) = (1 ; -1)$ hoặc $(-1 ; 1)$
Thử lại, ba cặp số $(0 ; 0), (1 ; -1), (-1 ; 1)$ đều là nghiệm của phương trình đã cho.

PHƯƠNG PHÁP 8: TÌM NGHIỆM RIÊNG
1. Phương pháp:

Xét phương trình $ax + by + c = 0$          (1)
trong đó $a,b,c \in \mathbb{Z}$, $a \ne 0,b \ne 0$
Không mất tính tổng quát, giả thiết rằng $(a, b, c) = 1$. Thật vậy, nếu $\left( {{\text{a}},{\text{ b}},{\text{ c}}} \right){\text{ }} = {\text{ }}d \ne 1$ thì ta chia hai vế của phương trình cho $d$.

Ta có hai định lý:
Định lý 1:

Nếu phương trình (1) có nghiệm nguyên thì $(a, b) = 1 (*)$
Chứng minh:

Giả sử $({x_o},{y_o})$ là nghiệm nguyên của (1) thì $a{x_o} + b{y_o} = c$
Nếu a và b có ước chung là $d \ne 1$ thì $c \vdots d$, trái với giả thiết $(a, b, c) = 1.$
Vậy $(a, b) = 1$

Định lý 2:

Nếu $({x_o},{y_o})$ là một nghiệm của phương trình (1) thì phương trình (1) có vô số nghiệm nguyên và mọi nghiệm nguyên của nó đều có thể biểu diễn dưới dạng:
                                 $\left\{ \begin{array}
  x = {x_o} + bt  \\
  y = {y_o} - at  \\
\end{array}  \right.$
trong đó $t$ là một số nguyên tùy ý $(t = 0, \pm 1, \pm 2,...)$.
Chứng minh:
Bước 1: Mọi cặp số $({x_o} + bt;{y_o} - at)$ đều là nghiệm nguyên của (1). Thật vậy $({x_o},{y_o})$ là nghiệm của (1) nên $a{x_o} + b{y_o} = c$
Ta có: $ax + by = a({x_o} + bt) + b({y_o} - at) = a{x_o} + b{y_o} = c$
Do đó $({x_o} + bt;{y_o} - at)$ là nghiệm của (1)
Bước 2: Mọi nghiệm $(x, y)$ của (1) đều có dạng $({x_o} + bt;{y_o} - at)$ với $t \in \mathbb{Z}$
Thật vậy, do $({x_o},{y_o})$ và $(x, y)$ là nghiệm của (1) nên
                               $\begin{array}
  ax + by = c  \\
a{x_o} + b{y_o} = c  \\
\end{array} $
Trừ từng vế:
$\begin{array}
  a(x - {x_o}) + b(y - {y_o}) = 0  \\
   \Rightarrow a(x - {x_o}) = b({y_o} - y)  \\
\end{array} $                           (2)
Ta có $a(x - {x_o})  \vdots b$ mà $(a, b) = 1$ (theo định lý 1) nên $x - {x_o}  \vdots b$
Vậy tồn tại số nguyên $t$ sao cho:    $x - {x_o}= bt$
Tức là: $x = {x_o} + bt$.
Thay vào (2):
$abt = b({y_o} - y)$
 $\begin{array}
   \Rightarrow at = {y_o} - y  \\
   \Rightarrow y = {y_o} - at  \\
\end{array} $
Vậy tồn tại số nguyên t sao cho:
        $\left\{ \begin{array}
  x = {x_o} + bt  \\
  y = {y_o} - at  \\
\end{array}  \right.$

2. Ví dụ:
Ví dụ 7:

Tìm mọi nghiệm nguyên của phương trình:
                  $3x – 2y = 5$
Giải:
Cách 1: Ta thấy ${x_o} = 3;{y_o} = 2$ là một nghiệm riêng.
Theo định lý 2, mọi nghiệm nguyên của phương trình là:
        $\left\{ \begin{array}
  x = 3 - 2t  \\
  y = 2 - 3t  \\
\end{array}  \right.$        ($t$ là số nguyên tùy ý)
Cách 2: Ta thấy ${x_o} = 1;{y_o} =  - 1$ là một nghiệm riêng
Theo định lý 2, mọi nghiệm nguyên của phương trình là:
        $\left\{ \begin{array}
  x = 1 - 2t  \\
  y =  - 1 - 3t  \\
\end{array}  \right.$        ($t$ là số nguyên tùy ý)
Chú ý: Qua hai cách giải trên, ta thấy có nhiều công thức biểu thị tập hợp các nghiệm nguyên của cùng một phương trình.

3. Cách tìm một nghiệm riêng của phương trình bậc nhất hai ẩn:
Để tìm một nghiệm nguyên riêng của phương trình $ax + by = c$, ta có thể dùng phương pháp thử chọn: lần lượt cho $x$ bằng số có giá giá trị tuyệt đối nhỏ $(0; \pm 1; \pm 2...)$ rồi tìm giá trị tương ứng của $y$.

PHƯƠNG PHÁP 9: HẠ BẬC
Ví dụ 8:

Tìm nghiệm nguyên của phương trình :
           $x^3 + 2y^3 – 4z^3 = 0$         (1)
Giải:
(1) $ \Leftrightarrow x^3 = 4z^3 – 2y^3 $    (2)
Rõ ràng vế phải của (2) chia hết cho 2 nên $x^3 \vdots $ 2 do đó x $  \vdots $ 2. Đặt $x = 2x_1,  (x_1 \in \mathbb{Z}$).
Thay vào (2) ta có:
 (2) $ \Leftrightarrow $ 8x_1^3 = 4x^3 – 2y^3 $ \Leftrightarrow y^3 = 2z^3 – 4x_1^3 $     (3)
Lập luận tương tự ta có $y  \vdots $ 2, đặt $y = 2y_1,   (y_1 \in $$\mathbb{Z}$).
Biến đổi tương tự, ta được:
              $z^3 = 4y_1^3 + 2x_1^3$          (4)
Lập luận tương tự ta có $z  \vdots $ 2, đặt $z = 2z_1,   (z_1 \in \mathbb{Z}$).
Biến đổi tương tự, ta lại có:
 (4) $ \Leftrightarrow  8z_1^3 = 4y_1^3 + 2x_1^3  \Leftrightarrow x_1^3 + 2y_1^3 – 4z_1^3 = 0$             (5)
Rõ ràng nếu bộ số $(x_0; y_0; z_0)$ là nghiệm của (1) thì bộ số $(\frac{{{x_0}}}{2};\frac{{{y_0}}}{2};\frac{{{z_0}}}{2})$ cũng là nghiệm của (1), hơn nữa $x_0, y_0, z_0$ là số chẵn và $\frac{{{x_0}}}{2};\frac{{{y_0}}}{2};\frac{{{z_0}}}{2}$ cũng là số chẵn. Quá trình này có thể tiếp tục mãi và các số $\frac{{{x_0}}}{{{2^n}}};\frac{{{y_0}}}{{{2^n}}};\frac{{{z_0}}}{{{2^n}}}$ là số chẵn với mọi n là số nguyên dương.
Vậy $x = y = z = 0$

Bài tập rèn luyện:
Bài 1:
   
Tìm $x, y$ nguyên thỏa mãn :
                 $x^2y^2 – x^2 – 8y^2 =2xy$
Hướng dẫn:
Viết lại phương trình đã cho dưới dạng:
          $y^2(x^2 – 7) = (x + y)^2.$           (1)
Phương trình đã cho có nghiệm $x = y = 0$. Xét $x, y \ne 0$. Từ (1) suy ra $x^2 – 7$ là một số chính phương. Đặt x^2 – 7 = a^2, ta có
         $(x – a)(x + a) = 7 $
Từ đó tìm được $x $
Đáp số: $(0, 0) ; (4, -1) ; (4, 2) ; (-4, 1) ; (-4, -2) $

Bài 2:   
Tìm các số nguyên dương $x, y, z$ thỏa mãn:
   a) $1! + 2! + ... + x! = {y^2}$
   b) $x! + y! = 10z + 9$
Hướng dẫn:
a)    Đây là bài toán liên quan đến chữ số tận cùng của một số chính phương.
Nếu $x \geqslant 4$ thì $1!+2!+…+x!$ tận cùng bởi 3 và không có số nguyên dương y nào thỏa mãn.
Đáp số : $x= y = 1$ hoặc $x = y = 3.$
b)    Nếu x, y > 1 thì x!+y! chia hết cho 2; loại
Nếu y = 1 thì $x! = 10z + 8 = 8$ (mod10), suy ra $x \leqslant 4.$
Đáp số : vô nghiệm.

Bài 3:   
Tìm tất cả nghiệm nguyên $(x; y)$ của phương trình :
                 $({x^2} + y)(x + {y^2}) = {(x - y)^3}$
Hướng dẫn:
Biến đổi phương trình về dạng
       $y[2{y^2} + ({x^2} - 3x)y + (x + 3{x^2})] = 0$       (1)
TH 1: $y = 0$
TH 2: y $ \ne 0$. Khi đó
    (1) $ \Leftrightarrow 2{y^2} + ({x^2} - 3x)y + (x + 3{x^2}) = 0$    (2)
Xem (2) là phương trình bậc 2 đối với biến $y$. Để (2) có nghiệm nguyên thì $\Delta  = {(x + 1)^2}x(x - 8)$ phải là một số chính phương, tức là
$x(x - 8) = {a^2}(a \in \mathbb{N}) \Rightarrow (x - 4 - a)(x - 4 + a) = 16$
Từ đó ta tìm được $x$
Đáp số : $(x; y) = (9; -6) , (9; -21) , (8; -10) , (-1; -1)$ và $(m; 0)$ với $m \in \mathbb{Z}$

Bài 4:
   
Tìm các nghiệm nguyên dương của phương trình:
                  $3{x^2} + 4{y^2} = 6x + 13$
Hướng dẫn:
biến đổi $3{x^2} - 6x + 3 = 16 - 4{y^2}$
                  $3{(x - 1)^2} = 4(4 - {y^2})$
Đáp số: $(3 ; 1), (3 ; -1), (-1 ; 1), (-1 ; -1), (1 ; 2), (1 ; -2)$

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN III

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN III PHƯƠNG PHÁP 7: DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG1. Sử dụng tính chất về chia hết của số chính phương Ví dụ 1: Tìm các số nguyên $x$ để $9x + 5$ là tích của hai số nguyên liên...
0
phiếu
0đáp án
15K lượt xem

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN II


PHƯƠNG PHÁP 4: DÙNG TÍNH CHIA HẾT, TÍNH ĐỒNG DƯ
Phương pháp:

Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra điểm đặc biệt của các biến số cũng như các biểu thức chứa trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn..

1. Phương pháp phát hiện tính chia hết của ẩn:
Ví dụ 1:

Giải phương trính với nghiệm nguyên:
                  $3x + 17y = 159$
Giải:
Giả sử x, y là các số nguyên thỏa mãn phương trình. Ta thấy 159 và $2x$ đều chia hết cho 3 nên $17y  \vdots $3 do đó $y  \vdots $3 ( vì 17 và 3 nguyên tố cùng nhau)
Đặt $y = 3t$ ($t \in \mathbb{Z}$). Thay vào phương trình ta được:
$3x + 17.3t = 159$
$ \Leftrightarrow $ $x + 17t = 53$
Do đó: $\left\{ \begin{array}
  x = 53 - 17t  \\
  y = 3t  \\
\end{array}  \right.$ ( $t \in \mathbb{Z}$)
Đảo lại, thay các biểu thức của $x$ và $y$ vào phương trình ta được nghiệm đúng.
Vậy phương trình (1) có vô số nghiệm nguyênđược xác định bằng công thức:
$\left\{ \begin{array}
  x = 53 - 17t  \\
  y = 3t  \\
\end{array}  \right.$ ($t$ là số nguyên tùy ý)

Ví dụ 2:
Chứng minh rằng phương trình : ${x^2} - 5{y^2} = 27$     (1)  không có nghiệm là số nguyên.
Giải:
Một số nguyên $x$ bất kì chỉ có thể biểu diễn dưới dạng $x = 5$k hoặc $x = 5k ± 1$ hoặc $x = 5k ± 2$ trong đó $k \in \mathbb{Z}$
•    Nếu $x = 5k$ thì :
$(1) \Leftrightarrow {(5k)^2} - 5{y^2} = 27 $
$\Leftrightarrow 5(5{k^2} - {y^2}) = 27$
Điều này vô lí, vì vế trái chia hết cho 5 với mọi $k$ và $y$ là số nguyên, còn vế phải không chia hết cho 5
•    Nếu $x = 5k \pm 1$ thì :
$(1) \Leftrightarrow {(5k \pm 1)^2} - 5{y^2} = 27$
$ \Leftrightarrow 25{k^2} \pm 10k + 1 - 5{y^2} = 27$
$ \Leftrightarrow 5(5{k^2} \pm 4k - {y^2}) = 23$
Điều này cũng vô lí, vế trái chia hết cho 5 với mọi $k$ và $y$ là số nguyên, còn vế phải không chia hết cho 5
•    Nếu $x = 5k \pm 2$ thì :
$(1) \Leftrightarrow {(5k \pm 2)^2} - 5{y^2} = 27$
$ \Leftrightarrow 25{k^2} \pm 20k + 4 - 5{y^2} = 27$
$ \Leftrightarrow 5(5{k^2} \pm 4k - {y^2}) = 23$
Lập luận tương tự như trên, điều này cũng vô lí
Vậy phương trình đã cho không có nghiệm là số nguyên

Ví dụ 3:
Tìm nghiệm nguyên dương của phương trình sau :
                        $19x^2 + 28y^2 = 729$.
Giải
Cách 1. Viết phương trình đã cho dưới dạng
                        $(18x^2 + 27y^2) + (x^2 + y^2) = 729$            (1)
Từ (1) suy ra $x^2 + y^2$ chia hết cho 3, do đó $x$ và $y$ đều chia hết cho 3. Đặt
               $x = 3u$, $y = 3v$ $(u,v \in \mathbb{Z})$
Thay vào phương trình đã cho ta được : $19u^2 + 28v^2 = 81$.     (2)
Từ (2) lập luận tương tự trên ta suy ra $u = 3s, v = 3t$ $(s,t \in \mathbb{Z})$
Thay vào (2) ta có $19s^2 + 28t^2 = 9. $       (3)
Từ (3) suy ra $s, t$  không đồng thời bằng 0, do đó
             $19s^2 + 28t^2 ≥ 19 > 9.$
Vậy (3) vô nghiệm và do đó phương trình đã cho cũng vô nghiệm.
Cách 2. Giả sử phương trình có nghiệm
Từ phương trình đã cho ta suy ra $x^2 = -1$ (mod 4), điều này không xảy ra với mọi số nguyên $x$. Vậy phương trình đã cho vô nghiệm

2. Phương pháp đưa về phương trình ước số
Ví dụ 4:

Tìm các nghiệm nguyên của phương trình:
                         $xy – x – y = 2$
Giải:
Biến đổi phương trình thành:
$x(y – 1) – y = 2$
$ \Leftrightarrow $$x(y – 1) – (y – 1) = 3$
$ \Leftrightarrow $$(y – 1)(x – 1) = 3$
Ta gọi phương trình trên là phương trình ước số: vế trái là 1 tích các thừa số nguyên, vế phái là một hằng số. Ta có $x$ và $y$ là các số nguyên nên $x – 1 $ và $y – 1$ là các số nguyên và là ước của 23.
Do vai trò bình đẳng của $x$ và $y$ trong phương trình nên có thể giả sử $x \geqslant y$, khi đó
$x – 1 \geqslant y – 1$
Ta có:  $(x-1,y-1)=(3,1),(-1,-3)$
Do đó: $(x,y)=(4,2),(0,-2)$
Nghiệm nguyên của phương trình: $(4 ; 2), (2 ; 4), (0 ; -2), (-2 ; 0)$

Ví dụ 5:
Tìm nghiệm nguyên của phương trình : $x + xy + y = 9.$
Giải:
Phương trình đã cho có thể đưa về dạng :
         $(x + 1)(y + 1) = 10$.                           (1)
Từ (1) ta suy ra $(x + 1)$ là ước của 10 hay $(x + 1) \in \{  \pm 1; \pm 2; \pm 5; \pm 10\} $
Từ đó ta tìm được các nghiệm của phương trình là :
$(1, 4), (4, 1), (-3, -6), (-6, -3), (0, 9), (9, 0), (-2, -11), (-11, -2).$

Ví dụ 6:
Xác định tất cả các cặp nguyên dương (x; n) thỏa mãn phương trình sau
                     ${x^3} + 3367 = {2^n}$
Giải:
Để sử dụng được hằng đẳng thức $a^3 – b^3 = (a – b)(a^2 + ab + b^2)$ ta chứng minh $n$ chia hết cho 3 .
Từ phương trình đã cho ta suy ra ${x^3} \equiv {2^n}$(mod 7).
Nếu n không chia hết cho 3 thì $2^n$ khi chia cho 7 chỉ có thể cho số dư là 2, 4 hoặc 7, trong khi đó ${x^3}$ khi chia cho 7 chỉ có thể cho số dư là 0, 1, hoặc 6 nên không thề có đồng dư thức ${x^3} \equiv {2^n}$ (mod 7).
Vậy $n = 3m$ với $m$ là một số nguyên dương nào đó. Thay vào phương trình đã cho ta được
                             ${x^3} + 3367 = {2^{3m}}$
                   $({2^m} - x)[{(2m - x)^2} + 3x{.2^m}] = 3367$         (1)
Từ (1) ta suy ra ${2^m} - x$là ước của 3367
Hơn nữa,${({2^m} - x)^3} < {2^{3m}} - {x^3} = 3367$ nên $({2^m} - x) \in \{ 1;7;13\} $
Xét${2^m} - x = 1$, thay vào (1) ta suy ra $2^m(2^m – 1) = 2 × 561$, vô nghiệm.
Xét ${2^m} - x = 3$, thay vào (1) ta suy ra $2^m(2^m – 13) = 2 × 15$, vô nghiệm.
Xét ${2^m} - x = 7$, thay vào (1) ta suy ra $2^m(2^m – 7) = 24 × 32$. Từ đó ta có
        $m = 4; n = 3m = 12, và x = 9.$
Vậy $(x; n) = (9; 12)$

3. Phương pháp tách ra các giá trị nguyên:
Ví dụ 7:

Tìm các nghiệm nguyên của phương trình $9x + 2 = {y^2} + y$
Giải:
Biểu thị $x$ theo $y$:
     $x(y – 1) = y + 2$
Ta thấy $y \ne 1$ ( vì nếu $y = $1 thì ta có $0x = 3$ vô nghiệm)
Do đó: $x = \frac{{y + 2}}{{y - 1}} = \frac{{y - 1 + 3}}{{y - 1}} = 1 + \frac{3}{{y - 1}}$
Do $x$ là số nguyên nên $\frac{3}{{y - 1}}$ là số nguyên, do đó $y – 1$ là ước của 3. Lần lượt cho $y – 1$ bằng $-1, 1, -3, 3$ ta được
Đáp số $\left\{ \begin{array}
  x = k(k + 1)  \\
  y = 3k + 1  \\
\end{array}  \right.$ với $k$ là số nguyên tùy ý

PHƯƠNG PHÁP 5: LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN
Ví dụ 8:

Tìm các nghiệm nguyên của phương trình:
                  ${x^3} + 2{y^3} = 4{z^3}$
Giải:
Hiển nhiên $x \vdots 2$. Đặt $x = 2{x_1}$ với ${x_1}$ nguyên. Thay vào (1) rồi chia hai vế cho 2 ta được:
                    $4x_1^3 + {y^3} = 2{z^3}$                      (2)
Do đó $y \vdots 2$. Đặt $y = 2{y_1}$ với ${y_1}$ nguyên. Thay vào (2) rồi chia hai vế cho 2 ta được:
                   $2x_1^3 + 4y_1^3 = {z^3}$                       (3)
Do đó $z \vdots 2$. Đặt $z = 2{z_1}$ với ${z_1}$ nguyên. Thay vào (3) rồi chia hai vế cho 2 được:
                   $x_1^3 + 4y_1^3 = 4z_1^3$                       (4)
Như vậy nếu (x , y , z) là nghiệm của  (1) thì $({x_1},{y_1},{z_1})$ cũng là nghiệm của (1) trong đó $x = 2{x_1},y = 2{y_1},z = 2{z_1}$.
Lập luận tương tự như trên, $({x_2},{y_2},{z_2})$ cũng là nghiệm của (1) trong đó ${x_1} = 2{x_2},{y_1} = 2{y_2},{z_1} = 2{z_2}$.
Cứ tiếp tục như vậy ta đi đến: $x, y, z$ chia hết cho ${2^k}$ với $k$ là số tự nhiên tùy ý. Điều này chỉa xảy ra khi $x = y = z = 0$.
Đó là nghiệm nguyên duy nhất của (1)

Ví dụ 9:
Tìm ba số nguyên dương đôi một khác nhau $x, y, z$ thỏa mãn :
                                ${x^3} + {y^3} + {z^3} = {(x + y + z)^2}$
Giải:
Vì vai trò của x, y, z như nhau nên có thể giả sử $x < y < z$.
Áp dụng bất đẳng thức :
        $\frac{{{x^3} + {y^3} + {z^3}}}{3} \geqslant {\left( {\frac{{x + y + z}}{3}} \right)^3}$
Với mọi $x, y, z ≥ 0$ ta suy ra $x + y + z ≤ 9.$
Dấu bằng không xảy ra vì x, y, z đôi một khác nhau.
Vậy $x + y + z ≤ 8. $                                    (1)
Mặt khác: $x + y + z ≥ 1 + 2 + 3 = 6$.          (2)
Từ (1) và (2) ta suy ra $x + y + z \in \{ 6;7;8\} $
Từ đây kết hợp với phương trình ban đầu ta tìm được $x, y, z $
Vậy $(x, y, z) = (1, 2, 3)$ và các hoán vị của bộ ba số này

PHƯƠNG PHÁP 6: XÉT CHỮ SỐ TẬN CÙNG
Ví dụ 10:

Tìm nghiệm nguyên dương của phương trình :
             $1! + 2! + ... + x! = {y^2}$           (1)
Giải:
Cho `x` lần lượt bằng 1; 2; 3; 4, ta có ngay 2 nghiệm nguyên dương $(x ; y)$ của phương trình là $(1 ; 1), (3 ; 3)$
Nếu $x > 4$ thì dễ thấy $k!$ với $k > 4$ đều có chữ số tận cùng bằng 0
$ \Rightarrow $ $1! + 2! + 3! + 4! + … + x! = 33 + 5! + … + x!$ có chữ số tận cùng bằng 3.
Mặt khác vế phải là số chính phương nên không thể tận cùng là 3.
Vậy phương trình (1) chỉ có hai nghiệm nguyên dương  $(x ; y)$ là (1 ; 1) và (3 ; 3)

Ví dụ 11:
Tìm x, y nguyên dương thỏa mãn phương trình:
             ${x^2} + x - 1 = {3^{2y + 1}}$        (1)
Giải:
Cho x nhận các giá trị từ đến 9, dễ dàng xác định được chữa số tận cùng của ${x^2} + x - 1$ chì nhận các giá trị 1; 5; 9. Mặt khác ta thấy ${3^{2y + 1}}$ là lũy thừ bậc lẻ của 3 nên chữ số tận cùng của nó chỉ có thể là 3 hoặc 7, khác với 1; 5; 9.
Vậy (1) không thể xảy ra. Nói các khác phương trình (1) không có nghiệm nguyên dương.

Bài tập rèn luyện:
Bài 1:

Tìm nghiệm của phương trình:
                  $2^x – 3 = 65y$
Hướng dẫn:
Ta chứng tỏ phương trình đã cho không có nghiệm nguyên. Giả sử phương trình $2^x – 3 = 65y$ có nghiệm nguyên ta suy ra
      $2^x = 3 (mod 5)$ và $2^x = 3$ (mod 13)
Từ $2^x = 3$ (mod 5) suy ra $x = 3$ (mod 4)     (1)
Từ $2^x = 3$ (mod 13) ta suy ra $x = 4$ (mod 12), trái với (1)
Bài 2:
Tìm nghiệm nguyên của các phương trình sau :
a)    $15x^2 – 7y^2 = 9$
b)    $29x^2 – 28y^2 = 2000$
c)    $1999x^2 – 2000y^2 = 2001$
d)    $x^{2002} – 2000.y^{2001} = 2003$
e)    $19x^2 – 84y^2 = 198$
Hướng dẫn:
a) Từ phương trình đã cho ta suy ra y chia hết cho 3. Đặt $y = 3y_1$. Ta có
                           $5x_2 – 21y_1^2 = 3$   (1)
Từ (1) suy ra x chia hết cho 3. Đặt x = 3x1. Ta có
                          $15x_1^2 – 7y_1^2 = 1$  (2)
Từ (2) suy ra $y_1^2 = -1$ (mod 3), vô nghiệm
b) Từ phương trình đã cho ta suy ra $x^2 = 5$ (mod 7). Vậy phương trình đã cho vô nghiệm
c)     Từ phương trình đã cho ta suy ra $x^2 = -1$ (mod 4). Vậy phương trình đã cho vô nghiệm
d)    Từ phương trình đã cho ta suy ra $x$ lẻ và $x^2002 = 1$ (mod 4)
Suy ra 2003 = 1 (mod 4), vô lí. Vậy phương trình đã cho vô nghiệm.
e)   Giả sử phương trình đã cho có nghiệm. Khi đó: $y^2 + 1 = 0$ (mod 19). Vì 19 là số nguyên tố có dạng $4k + 3$ nên $y^2 + 1 = 0$ (mod 19) ta suy ra 19 | 1, vô lí
Bài 3:  
Tìm các số nguyên $x, y, z, t$ sao cho :
   a) ${x^2} + {y^2} + {z^2} = {x^2}{y^2}$
   b) ${x^2} + {y^2} + {z^2} = 2xyz$
   c) ${x^2} + y{}^2 + {z^2} + {t^2} = 2xyzt$
Hướng dẫn:
Sử dụng phương pháp xuống thang
a) Phương trình đã cho : ${x^2} + {y^2} + {z^2} = {x^2}{y^2}$      (1)
Nếu cả $x$ và $y$ đều lẻ thì từ (1) suy ra $z$ chẵn. Khi đó, ${x^2} + {y^2} + {z^2} \equiv 2(\bmod 4)$ còn ${x^2}{y^2} \equiv 1(\bmod 4):$ vô lí
Vậy 1 trong 2 biến $x, y$ phải chẵn
Giả sử x chẵn, từ (1) suy ra ${y^2} + {z^2} \vdots 4$ do đó cả $y$ và $z$ đều phải chẵn
Đặt $x = 2{x_1},y = 2{y_1},z = 2{z_1}({x_1},{y_1},{z_1} \in \mathbb{N})$.
Thay vào (1) ta có $x_1^2 + y_1^2 + z_1^2 = 4x_1^2.y_1^2.$         (2)
Từ (2) lại lập luận như trên ta suy ra ${x_1},{y_1},{z_1}$ đều chẵn
Cứ tiếp tục như vậy sẽ dẫn đến $x  \vdots {2^k},y  \vdots {2^k},z  \vdots {2^k},\forall k \in \mathbb{N}.$
Điều này chỉ xảy ra khi $x = y = z = 0$
b) , c) tương tự

Bài 4:  
Cho phương trình: $x^3 – 3xy^2 + y^3 = n$
a)    Giả sử phương trình đã cho có một nghiệm nguyên $(x, y)$. Chứng minh rằng phương trình đã cho có ít nhất ba nghiệm nguyên
b)    Giải phương trình tìm nghiệm nguyên với $n = 2002$
Hướng dẫn:
a)    Ta có
${x^3} - 3x{y^2} + {y^3} = {(y - x)^3} - 3(y - x){x^2} + {( - x)^3}$

$ = {( - y)^3} - 3( - y){(x - y)^2} + {(x - y)^3}.$
b)   Từ phương trình đã cho ta suy ra ${x^3} + {y^3} \equiv 1(\bmod 3).$
Suy ra $x \equiv 1(\bmod 3)$ và $y \equiv 0(\bmod 3)$ hoặc $x \equiv 0(\bmod 3)$ và $y \equiv 1(\bmod 3)$
Cả hai trường hợp ta đều có ${x^3} - 3x{y^2} + {y^3} \equiv 1(\bmod 9)$.
Do đó phương trình đã cho không còn nghiệm khi $n = 2002$.

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN II

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN II PHƯƠNG PHÁP 4: DÙNG TÍNH CHIA HẾT, TÍNH ĐỒNG DƯ Phương pháp: Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ,… để tìm ra...
0
phiếu
0đáp án
70K lượt xem

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN I


GIỚI THIỆU
Không giống như các phương trình nghiệm thực hay nghiệm phức, phương trình nghiệm nguyên khó giải quyết hơn vì điều kiện ràng buộc nguyên của nhiệm. Vì vậy với phương trình nghiệm nguyên, ta thường không có một phương pháp hoặc định hướng giải cụ thể nào như với phương trình nghiệm thực và nghiệm phức. Tuy nhiên, ta có thể áp dụng một số phương pháp hiệu quả để giải quyết lớp phương trình này. Trong chuyên đề này ta sẽ nêu ra một số phương pháp giải phương trình nghiệm nguyên. Tùy vào từng bài toán mà ta có những dấu hiệu nhận biết để chọn phương pháp thích hợp.

Các phương pháp giải phương trình nghiệm nguyên (từ đơn giản đến phức tạp):
1.    Xét số dư của từng vế
2.    Đưa về dạng tổng
3.    Dùng bất đẳng thức
4.    Dùng tính chia hết, tính đồng dư
5.    Lùi vô hạn, nguyên tắc cực hạn
6.    Xét chữ số tận cùng
7.    Dùng tính chất của số chính phương
8.    Tìm  nghiệm riêng
9.    Hạ bậc

PHƯƠNG PHÁP 1: XÉT SỐ DƯ CỦA TỪNG VẾ
Ví dụ 1:
Chứng minh các phương trình sau không có nghiệm nguyên:
a) ${x^2} - {y^2} = 1998$
b) ${x^2} + {y^2} = 1999$
Giải:
a) Dễ chứng minh ${x^2},{y^2}$ chia cho 4 chỉ có số dư 0 hoặc 1 nên ${x^2} - {y^2}$ chia cho 4 có số dư 0, 1, 3. Còn vế phải 1998 chia cho 4 dư 2
Vậy phương trình đã cho không có nghiệm nguyên.
b) ${x^2},{y^2}$ chia cho 4 có số dư 0, 1 nên ${x^2} + {y^2}$ chia cho 4 có các số dư 0, 1, 2. Còn vế phải 1999 chia cho 4 dư 3.
Vậy phương trình không có nghiệm nguyên.

Ví dụ 2:
Tìm các nghiệm nguyên của phương trình
$9x + 2 = {y^2} + y$
Giải:
Biến đổi phương trình: $9x + 2 = y(y + 1)$
Ta thấy  vế trái của phương trình là số chia hết cho 3 dư 2 nên $y(y + 1)$ chia cho 3 dư 2.
Chỉ có thể: $y = 3k + 1$, $y + 1 = 3k + 2$ với k nguyên
Khi đó: $9x + 2 = (3k + 1)(3k + 2)$
            $ \Leftrightarrow 9x = 9k(k + 1)$
            $ \Leftrightarrow x = k(k + 1)$
Thử lại, $x = k(k + 1)$, $y = 3k + 1$ thỏa mãn phương trình đã cho.
Đáp số $\left\{ \begin{array}
  x = k(k + 1)  \\
  y = 3k + 1  \\
\end{array}  \right.$ với $k$ là số nguyên tùy ý

PHƯƠNG PHÁP 2. ĐƯA VỀ DẠNG TỔNG
Phương pháp:

Biến đổi phương trình về dạng: vế trái là tổng của các bình phương, vế phải là tổng của các số chính phương.

Ví dụ 3:
Tìm các nghiệm nguyên của phương trình:
                      ${x^2} + {y^2} - x - y = 8$              (1)
Giải:
 (1)$ \Leftrightarrow 4{x^2} + 4{y^2} - 4x - 4y = 32$
     $\begin{array}
   \Leftrightarrow (4{x^2} + 4x + 1) + (4{y^2} - 4y + 1) = 34  \\
   \Leftrightarrow |2x - 1{|^2} + |2y - 1{|^2} = {3^2} + {5^2}  \\
\end{array} $
Bằng phương pháp thử chọn ta thấy 34 chì có duy nhất một dạng phân tích thành tồng của hai số chính phương ${3^2},{5^2}$. Do đó phương trình thỏa mãn chỉ trong hai khả năng:
                    $\left\{ \begin{array}
  |2x - 1| = 3  \\
  |2y - 1| = 5  \\
\end{array}  \right.$  hoặc  $\left\{ \begin{array}
  |2x - 1| = 5  \\
  |2y - 1| = 3  \\
\end{array}  \right.$
Giải các hệ trên $ \Rightarrow $phương trình (1) có bốn nghiệm nguyên là: (2 ; 3), (3 ; 2), ($ - $1 ; $ - $2), ($ - $2 ; $ - $1)

PHƯƠNG PHÁP 3: DÙNG BẤT ĐẲNG THỨC
Phương pháp:

Trong khi giải các phương trình nghiệm nguyên rất cần đánh giá các miền giá trị của các biến, nếu số giá trị mà biến số có thể nhận không nhiều có thể dùng phương pháp thử trực tiếp để kiểm tra. Để đánh giá được miền giá trị của biến số cần vận dụng linh hoạt các tính chất chia hết, đồng dư, bất đẳng thức …

1. Phương pháp sắp thứ tự các ẩn
Ví dụ 4:

Tìm ba số nguyên dương sao cho tổng của chúng bằng tích của chúng
Giải:
Cách 1: Gọi các số nguyên dương phải tìm là $x, y, z$. Ta có:
                       $x + y + z = x.y.z$     (1)
Chú ý rằng các ẩn $x, y, z$ có vai trò bình đẳng trong phương trình nên có thể sắp xếp thứ tự giá trị của các ẩn, chẳng hạn: $1 \leqslant x \leqslant y \leqslant z$
Do đó: $xyz = x + y + z \leqslant 3z$
Chia hai vế của bất đảng thức $xyz \leqslant 3z$ cho số dương z ta được: $xy \leqslant 3$
Do đó $xy \in \{ 1;2;3\} $
Với $xy = 1$, ta có $x = 1, y = 1$. Thay vào (1) được $2 + z = z$ (loại)
Với $xy = 2$, ta có $x = 1, y = 2$.  Thay vào (1) được $z = 3$
Với $xy = 3$, ta có $x = 1, y = 3$.  Thay vào (1) được $z = 2$ loại vì $y \leqslant z$
Vậy ba số phải tìm là 1; 2; 3.
Cách 2: Chia hai vế của (1) cho $xyz \ne 0$ được:
                     $\frac{1}{{yz}} + \frac{1}{{xz}} + \frac{1}{{xy}} = 1$
Giả sử $x \geqslant y \geqslant z \geqslant 1$ ta có
$1 = \frac{1}{{yz}} + \frac{1}{{xz}} + \frac{1}{{xy}} \leqslant \frac{1}{{{z^2}}} + \frac{1}{{{z^2}}} + \frac{1}{{{z^2}}} = \frac{3}{{{z^2}}}$
Suy ra $1 \leqslant \frac{3}{{{z^2}}}$ do đó ${z^2} \leqslant 3$ nên z = 1. Thay z = 1 vào (1):
         $x + y + 1 = xy$
      $ \Leftrightarrow xy - x - y = 1$
      $ \Leftrightarrow x(y - 1) - (y - 1) = 2$
      $ \Leftrightarrow (x - 1)(y - 1) = 2$
Ta có $x - 1 \geqslant y - 1 \geqslant 0$ nên $(x-1,y-1)=(2,1)$
Suy ra $(x,y)=(3,2)$
Ba số phải tìm là 1; 2; 3

Ví dụ 5:
Tìm nghiệm nguyên dương của phương trình sau :
                $5(x + y + z + t) + 10 = 2xyzt .$
Giải:
Vì vai trò của $x, y, z, t$ như nhau nên có thể giả thiết
                  x ≥ y ≥ z ≥ t.
Khi đó : 2xyzt = 5(x + y + z + t) +10 ≤ 20x + 10
     $ \Rightarrow yzt \leqslant 15 \Rightarrow {t^3} \leqslant 15 \Rightarrow t \leqslant 2$
Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15
     $ \Rightarrow 2yz \leqslant 30 \Rightarrow 2{z^2} \leqslant 30 \Rightarrow z \leqslant 3$
Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay
     (2x – 5)(2y – 5) = 65 .
Dễ thấy rằng phương trình này có nghiệm là
      (x = 35; y = 3) và (x = 9; y = 5).
Giải tương tự cho các trường còn lại và trường hợp $t = 2$.
Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là $(x; y; z; t) = (35; 3; 1; 1); (9; 5; 1; 1)$ và các hoán vị của các bộ số này.

2. Phương pháp xét từng khoảng giá trị của ẩn
Ví dụ 6:

Tìm các nghiệm nguyên dương của phương trình:
                $\frac{1}{x} + \frac{1}{y} = \frac{1}{3}$
Giải:
Do vai trò bình đẳng của $x$ và $y$, giả sử $x \geqslant y$. Dùng bất đẳng thức để giới hạn khoảng giá trị của số nhỏ hơn (là $y$).
Hiển nhiên ta có $\frac{1}{y} < \frac{1}{3}$ nên $y > 3$                (1)
Mặt khác do $x \geqslant y \geqslant 1$ nên $\frac{1}{x} \leqslant \frac{1}{y}$. Do đó:
$\frac{1}{3} = \frac{1}{x} + \frac{1}{y} \leqslant \frac{1}{y} + \frac{1}{y} = \frac{2}{y}$ nên $y \leqslant 6$     (2)
Ta xác định được khoảng giá tri của y là $4 \leqslant y \leqslant 6$
Với $y = 4$ ta được: $\frac{1}{x} = \frac{1}{3} - \frac{1}{4} = \frac{1}{{12}}$ nên $x = 12$
Với $y = 5$ ta được: $\frac{1}{x} = \frac{1}{3} - \frac{1}{5} = \frac{2}{{15}}$ loại vì $x$ không là số nguyên
Với $y = 6$ ta được: $\frac{1}{x} = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$ nên $x = 6$
Các nghiệm của phương trình là: (4 ; 12), (12 ; 4), (6 ; 6)

3. Phương pháp chỉ ra nghiệm nguyên
Ví dụ 7:

Tìm các số tự nhiên $x$ sao cho:
           ${2^x} + {3^x} = {5^x}$
Giải:
Viết phương trình dưới dạng:
${\left( {\frac{2}{5}} \right)^x} + {\left( {\frac{3}{5}} \right)^x} = 1$          (1)
Với $x = 0$ thì vế trái của (1) bằng 2, loại.
Với$ x = 1$ thì vế trái của (1) bằng 1, đúng
Với $x \geqslant 2$ thì ${\left( {\frac{2}{5}} \right)^x} < \frac{2}{5},{\left( {\frac{3}{5}} \right)^x} < \frac{3}{5}$ nên:
                    ${\left( {\frac{2}{5}} \right)^x} + {\left( {\frac{3}{5}} \right)^x} < \frac{2}{5} + \frac{3}{5} = 1$ loại
Nghiệm duy nhất của phương trình là x = 1

4. Sử dụng diều kiện $\Delta \geqslant 0$ để phương trình bậc hai có nghiệm
Ví dụ 8:

Tìm các nghiệm nguyên của phương trình:
             $x + y + xy = {x^2} + {y^2}$          (1)
Giải:
Viết (1) thành phương trình bậc hai đối với $x$:
 ${x^2} - (y + 1)x + ({y^2} - y) = 0$           (2)
Điều kiện cần để (2) có nghiệm là $\Delta \geqslant 0$
$\vartriangle  = {(y + 1)^2} - 4({y^2} - y) =  - 3{y^2} + 6y + 1 \geqslant 0$
                   $ \Leftrightarrow 3{y^2} - 6y - 1 \leqslant 0$
                   $ \Leftrightarrow 3{(y - 1)^2} \leqslant 4$
Do đó $ \Leftrightarrow {(y - 1)^2} \leqslant 1$ suy ra: $y\in \{0,1,2\}$  
Với $y = 0$ thay vào (2) được ${x^2} - x = 0 \Leftrightarrow {x_1} = 0;{x_2} = 1$
Với $y = 1$ thay vào (2) được ${x^2} - 2x = 0 \Leftrightarrow {x_3} = 0;{x_4} = 2$
Với $y = 2$ thay vào (2) được ${x^2} - 3x + 2 = 0 \Leftrightarrow {x_5} = 1;{x_6} = 2$
Thử lại, các giá trị trên nghiệm đúng với phương trình (1)
Đáp số: (0 ; 0), (1 ; 0), (0 ; 1), (2 ; 1), (1 ; 2), (2 ; 2)

Bài tập rèn luyện:
Bài 1:

Tìm tất cả các cặp nghiệm nguyên $(x, y)$ thỏa mãn :
                  $y(x – 1) = x^2 + 2.$
Hướng dẫn:
Ta có $y(x – 1) = x^2 + 2$$ \Rightarrow y = \frac{{{x^2} + 2}}{{x - 1}} = x + 1 + \frac{3}{{x - 1}}$
Vì $x, y$ nguyên nên $x – 1$ là ước của 3
Vậy$ (x, y) = (4, 6) ; (2, 6) ; (-2, -2 ) ; (0, -2)$

Bài 2:
Tìm $x, y$ $ \in \mathbb{Z}$ thỏa mãn :
                  $2x^2 – 2xy = 5x – y – 19$ .
Hướng dẫn:
$(x, y) = (0, -19) ; (1, 16) ; (9, 8) và (-8, -11)$

Bài 3:
Tìm nghiệm nguyên dương của phương trình:
                  $xy^2+ 2xy – 243y + x = 0$
Hướng dẫn:
Ta có $xy^2+ 2xy – 243y + x = 0$$ \Leftrightarrow $ $x(y + 1)^2 = 243y$      (1)
Từ (1) với chú ý rằng $(y + 1; y) = 1$ ta suy ra $(y + 1)^2$ là ước của 243.
Vậy $(x, y) = (54, 2) ; (24, 8)$

Bài 4:
Tìm các số nguyên dương thỏa mãn :
      $x < y  < z$ và $5^x + 2.5^y + 5^z = 4500.$
Hướng dẫn:
Nếu $z < 5$ thì $5^x + 2.5^y + 5^z < 4500.$
Nếu $z > 5$ thì $5^x + 2.5^y + 5^z >  4500.$
Vậy $x = 3, y = 4, z = 5.$

Bài 5:
Tìm các nghiệm nguyên dương của phương trình:  
                  $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$
Hướng dẫn:
Giả sử $1 \leqslant x \leqslant y$ thì $\frac{1}{x} \geqslant \frac{1}{y}$
$\begin{array}
\frac{1}{4} = \frac{1}{x} + \frac{1}{y} \leqslant \frac{2}{x} \Rightarrow x \leqslant 8  \\
\frac{1}{x} < \frac{1}{4} \Rightarrow x > 4  \\
\end{array} $
Vậy $4 < x \leqslant 8$, thử chọn để tìm nghiệm.
Đáp số: (5 ; 20), (20 ; 5), (6 ; 12), (12 ; 6), (8 ; 8)

Bài 6:
Chứng minh rằng phương trình sau không có nghiệm nguyên dương:
                       ${x^{17}} + {y^{17}} = {19^{17}}$
Hướng dẫn:

Giả sử ${x^{17}} + {y^{17}} = {19^{17}}$ và $1 \leqslant x \leqslant y < 19$
Ta có:
$\begin{array}
  {19^{17}} \geqslant {(y + 1)^{17}}  \\
   \Rightarrow {19^{17}} > {y^{17}} + 17{y^{16}}  \\
\end{array} $
Vậy $x > 17$, chỉ có thể $x = y = 18$.
Thử lại, $x = y = 18$ không thỏa.
Vậy phương trình đã cho không có nghiệm nguyên dương.

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN I

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN - PHẦN I GIỚI THIỆU Không giống như các phương trình nghiệm thực hay nghiệm phức, phương trình nghiệm nguyên khó giải quyết hơn vì điều kiện ràng buộc nguyên của nhiệm. Vì vậy với phương trình...