Tổng hợp các đề thi thử Đại Học

Tạo bởi: sunshine
Danh sách câu hỏi trong sổ
6
phiếu
0đáp án
1K lượt xem

Bạn nào có tài khoản vip trên Moon.vn không học nữa thì cho mình xin với!!!! Cần gấp mấy tài liệu ôn thi ĐH ý mà!!!! Xin cảm ơn trước nhé!!!!!
Chống Spam ^_^ : 
 Giả sử $a,b,c$ là các số thực không âm thỏa mãn $ab+bc+ca=1$ . Chứng minh : 
  $ \frac{1}{\sqrt{a^{2}+bc}}+\frac{1}{\sqrt{b^{2}+ac}}+\frac{1}{\sqrt{c^{2}+ab}} \geq  2\sqrt{2}$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Xin tài khoản Moon.vn!!! Đồng thời kiếm danh vọng!!!

Bạn nào có tài khoản vip trên Moon.vn không học nữa thì cho mình xin với!!!! Cần gấp mấy tài liệu ôn thi ĐH ý mà!!!! Xin cảm ơn trước nhé!!!!!Chống Spam ^_^ : Giả sử $a,b,c$ là các số thực không âm thỏa mãn $ab+bc+ca=1$ . Chứng minh : $...
17
phiếu
2đáp án
2K lượt xem
41
phiếu
4đáp án
3K lượt xem

         Đề thi thử 2016

Bài 1. (2,0 điểm) Cho hàm số:  $y=\frac{1}{3}x^3-ax^2-3ax+4$    $(1)$  ($a$ là tham số)
  1.1 Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $a=1.$
  1.2 Tìm $a$ để hàm số $(1)$ đạt cực trị tại $x_1,x_2$ phân biệt và thoả mãn điều kiện:
                            $\frac{x_1^2+2ax_2+9a}{a^2}+\frac{a^2}{x_2^2+2ax_1+9a}=2$ 
Bài 2. (1,0 điểm) 
  2.1 Cho số phức $z$ thoả mãn $(2-3i)\overline{z} -1-i+4i^{2016}=0.$ Tính modun của $z.$
  2.2 Giải phương trình: $3.16^x+2.81^x=5.36^x$
Bài 3. (1,0 điểm) Tính tích phân: $I=\int\limits_{0}^{1}x.\sqrt{2+x^2}dx.$
Bài 4. (1,0 điểm) Trong không gian với hệ trục tọa độ $Oxyz,$ cho mp $(P): x-y+2z=0$ và các điểm $A(1;2;-1);B(3;1;-2);C(1;-2;1).$ Tìm $M\in (P)$ sao cho $F=MA^2-MB^2-MC^2$ nhỏ nhất.
Bài 5. (1,0 điểm)
  5.1 Giải phương trình: $\sin^{3} 2x-\cos^{3} 2x=1$
  5.2 Bình có $10$ viên bi vàng, $12$ viên bi xanh, $15$ viên bi đỏ. Chọn ngẫu nhiên $4$ viên bi. Tính xác suất để $4$ viên bi được chọn có đủ cả $3$ màu.
Bài 6. (1,0 điểm) Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a,SA$ vuông góc với đáy, góc giữa $SC$ với mp đáy bằng $45^o.$ Tính thể tích khối chóp $S.ABC$ và khoảng cách từ $B$ đến mp $(SCD).$
Bài 7. (1,0 điểm) Trong mp toạ độ $Oxy,$ cho tam giác $ABC$ vuông tại $A,B(1;1).$ Đường thẳng $AC$ có phơơng trình $4x+3y-32=0.$ Trên tia $BC$ lấy điểm $M$ sao cho $BC.BM=75.$ Tìm toạ độ đỉnh $C$ biết bán kính của đường tròn ngoại tiếp tam giác $AMC$ bằng $\frac{5\sqrt{5}}{2}.$
Bài 8. (1,0 điểm) Giải hệ phương trình:
\begin{cases}(x-y)^2+x+y=y^2 \\ x^4-4x^2y+3x^2+y^2=0 \end{cases} 
Bài 9. (1,0 điểm) Cho $a,d\geq 0;b,c>0$ thoả mãn $b+c\geq a+d.$ Tìm GTNN của biểu thức:
                                              $P=\frac{b}{c+d}+\frac{c}{a+b}$
$\;$

Đề thi thử 2016Bài 1. (2,0 điểm) Cho hàm số: $y=\frac{1}{3}x^3-ax^2-3ax+4$ $(1)$ ($a$ là tham số) 1.1 Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $a=1.$ 1.2 Tìm $a$ để hàm số $(1)$ đạt cực trị tại $x_1,x_2$ phân biệt và thoả mãn...