Giải các phương trình sau:
1) $4x-x^{2}=3\sqrt{4-3\sqrt{10-3x}}$
2) $(x+3)\sqrt{(4-x)(12+x)}=28-x$
3) $10x^{4}-14x^{2}+19=(5x^{2}-38)\sqrt{x^{2}-2}$
4) $x^{3}-3x-\sqrt{x+2}=0$
5) $\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}$
6) $\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}=5$
6) $\sqrt[3]{x^{2}}-2\sqrt[3]{x}-(x-4)\sqrt{x-7}-3x+28=0$
7) $x^{4}+2x^{3}+2x^{2}-2x=1=(x^{3}+x)\sqrt{\frac{1-x}{x^{2}}}$
8) $x^{3}-\sqrt[3]{6+\sqrt[3]{x+6}}=6$
9) $\sqrt{2x^{2}+4x+7}=x^{4}+4x^{3}+3x^{2}-2x-7$
10) $\sqrt{1-x^{2}}+\sqrt[4]{x^{2}=x-1}+\sqrt[6]{1-x}=1$
11) $\sqrt{1-x^{2}}=(\frac{2}{3}-\sqrt{x})^{2}$
12) $64x^{6}-112x^{4}+56x^{2}-7=\sqrt{1-x^{2}}$
13) $\sqrt{x}+\sqrt[3]{x+7}=\sqrt[4]{x+80}$
14) $\sqrt[3]{x}+1=2(2x-1)^{2}$
15) $(x-2)\sqrt{x-1}-\sqrt{2}x+2=0$
16) $4x^{2}-4x-10=\sqrt{8x^{2}-6x-10}