Cho 3 số thực $x,y,z$ đôi một khác nhau thuộc đoạn $[-1;1]$. tìm GTNN của biểu thức $Q=\frac{4}{(x-y)^2} + \frac{4}{(y-z)^2}+ \frac{4}{(z-x)^2}$
nhờ mn thông não giúp ^.^
Cho 3 số thực $x,y,z$ đôi một khác nhau thuộc đoạn $[-1;1]$. tìm GTNN của biểu thức $Q=\frac{4}{(x-y)^2} + \frac{4}{(y-z)^2}+ \frac{4}{(z-x)^2}$
|
|
$\frac{1}{\sqrt{1+8a}}+\frac{1}{\sqrt{1+8b}}+\frac{1}{\sqrt{1+8c}} \ge 1$
|
|
Sau đây là Bài 2 và 3 trong chuỗi Bài 2:$\begin{cases}xy+x-2=0 \\ 2x^3-x^2y+x^2+y^2-2xy-y=0 \end{cases}$Bài 3:$\begin{cases}2x^2+y^2-3xy+3x-2y+1=0(1) \\ 4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y} (2)\end{cases}$Xem Thêm:+ Lời Mở Đầu+ Ngày 1 bài 1.
|
|
Ngày số 1 gồm 5 bài : Giờ đăng thử nhé, đăng giải sẽ hơi lâu đóBài Số 1$\begin{cases}5x^2y-4xy^2+3y^3-2(x+y)=0 (1)\\ xy(x^2+y^2)+2=(x+y)^2 (2)\end{cases}$P/S: đây là bài đăng sách mục lục có thể xem ở bài đằng Lời Mở Đầu
|
|
Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt: $M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
Cực trị
Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt:$M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
|
|
Cho $a, b > 0$ và $a^{9}+b^{9}=2$. C/m : $\frac{a^{2}}{b}+\frac{b^{2}}{a} \geq 2$
ôn vào lớp 10 BĐT part 1
Cho $a, b > 0$ và $a^{9}+b^{9}=2$. C/m : $\frac{a^{2}}{b}+\frac{b^{2}}{a} \geq 2$
|
|
Bài 8 (1điểm). trong mặt phẳng với hệ tọa độ
Oxy, cho tam giác ABC vuông tại A. gọi H(5;5) là hình chiếu vuông góc của đỉnh
A trên cạnh BC, đường phân giác trong góc A của tam giác ABC nằm trên đường thẳng
x-7y+20=0. Đường thẳng chứa trung tuyến AM của tam giác ABC đi qua điểm
.K(-10;5) Tìm tọa độ các đỉnh của tam giác ABC biết B có
tung độ dương.Bài 9 ( 1 điểm) giải hệ phương trình $\left\{ \begin{array}{l} \sqrt{x^{2}(1+y^{2})}-\sqrt{1+x^{2}}=1-xy\\ (2x-7xy)(\sqrt{3x-2}-\sqrt{x+3xy})=5 \end{array} \right.$ Bài 10 (1 điểm). xét các số thực dương x,y,z thỏa mãn $x^{2}+y^{2}+z^{2}=xy+xz+10yz$. tìm GTNN của $P=8xyz-\frac{3x^{3}}{y^{2}+z^{2}}$
Bộ 3 câu phân loại đề Hà Nội =))
|
|
Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr : $(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
Ai giỏi BĐT nào ...^-^
Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
|
|
CMR: $A=1^n+2^n+3^n+....+x^n$ chia hết cho $B=1+2+3+...+x$ với $x;n$ và là các số nguyên dương và $n$ lẻ
|
|
Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$ chứng minh rằng $x+y+z\leq 2+xyz$
BĐT Ngắn Gọn
Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$chứng minh rằng $x+y+z\leq 2+xyz$
|
|
$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$
(càng nhiều cách càng tốt nha)
BĐT
$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$(càng nhiều cách càng tốt nha)
|
|
Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$ Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
Max dễ...
Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
|
|
Cho $a, b, c$ là các số thực dương thỏa mãn $abc \geq 1$. Cmr: $\frac{a^{5}-a^{2}}{a^{5}+b^{2}+c^{2}}+\frac{b^{5}-b^{2}}{b^{5}+c^{2}+a^{2}}+\frac{c^{5}-c^{2}}{c^{5}+a^{2}+b^{2}} \geq 0$
Mong mấy sư phụ chỉ giáo cho em
Cho $a, b, c$ là các số thực dương thỏa mãn $abc \geq 1$.Cmr: $\frac{a^{5}-a^{2}}{a^{5}+b^{2}+c^{2}}+\frac{b^{5}-b^{2}}{b^{5}+c^{2}+a^{2}}+\frac{c^{5}-c^{2}}{c^{5}+a^{2}+b^{2}} \geq 0$
|
|
Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$ Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
Help!!!!
Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
|
|
Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
|
|
Cho a,b,c thỏa mãn abc=1
Tìm giá trị nhỏ nhất của biểu thức sau : P = $\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}$
Lại cực trị!!!!!!
Cho a,b,c thỏa mãn abc=1Tìm giá trị nhỏ nhất của biểu thức sau : P = $\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}$
|
|
(Bài Toán Thách Thức )Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
|
|
Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca=7abc$ Tìm GTNN : $S=\frac{8a^{4}+1}{a^{2}}+\frac{108b^{5}+1}{b^{2}}+\frac{16c^{6}+1}{c^{2}}$
Cực trị
Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca=7abc$Tìm GTNN : $S=\frac{8a^{4}+1}{a^{2}}+\frac{108b^{5}+1}{b^{2}}+\frac{16c^{6}+1}{c^{2}}$
|
|
đề thi thử vào 10
Cho $x, y, z$ là các số thực dương thỏa mãn $x+y+z=3$. Chứng minh: $(x-1)^{3} +(y-1)^{3}+(z-1)^{3} \geq \frac{-3}{4}$
Chứng minh: $(x-1)^{3} +(y-1)^{3}+(z-1)^{3} \geq \frac{-3}{4}$
đề thi thử vào 10Cho $x, y, z$ là các số thực dương thỏa mãn $x+y+z=3$. Chứng minh:$(x-1)^{3} +(y-1)^{3}+(z-1)^{3} \geq \frac{-3}{4}$
|
|
cho $x,y,z >0$ thỏa mãn $xyz=1$ .tìm $max$ $P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz} +\frac{\sqrt{z}}{1+z+zx}$
bất đẳng thức nha!!!
cho $x,y,z >0$ thỏa mãn $xyz=1$ .tìm $max$ $P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz} +\frac{\sqrt{z}}{1+z+zx}$
|
|
|
|
Cho $x,y,z$ là các số không âm thoả mãn: $x+y+z=1$ Tìm GTLN của $P=(x+2y+3z)(6x+3y+2z)$
Bất đẳng thức khó!
Cho $x,y,z$ là các số không âm thoả mãn: $x+y+z=1$Tìm GTLN của $P=(x+2y+3z)(6x+3y+2z)$
|
|
Giải phương trình nghiệm nguyên: $x^2+(x+1)^2=y^4+(y+1)^4$.
Cũng very gấp nốt :|||
Giải phương trình nghiệm nguyên:$x^2+(x+1)^2=y^4+(y+1)^4$.
|
|
Cho $x,y$ thỏa: $\frac{x^2}{9}+\frac{y^2}{16}=10$.Tìm $Max,Min$ $P=x-y+2016$.
Bất đẳng thức
Cho $x,y$ thỏa: $\frac{x^2}{9}+\frac{y^2}{16}=10$.Tìm $Max,Min$$P=x-y+2016$.
|
|
Cho $x,y,z \in R^+$ thỏa mãn: $xy+yz+zx=xyz$.Tìm $GTLN$ của: $M=\sum_{}^{} \frac{1}{4x+3y+z}.$
Bất đẳng thức ( Khó Vãi Cả ... )
Cho $x,y,z \in R^+$ thỏa mãn: $xy+yz+zx=xyz$.Tìm $GTLN$ của:$M=\sum_{}^{} \frac{1}{4x+3y+z}.$
|
|
|
|
cho (O) và (O') ngoài nhau. Kẻ tiếp tuyến chung ngoài AA', BB' ( A,B thuộc (O)). Nối AB' cắt (O) ở M và cắt (O') ở N. chứng minh AM=NB'
rảnh rỗi sinh nông nổi
cho (O) và (O') ngoài nhau. Kẻ tiếp tuyến chung ngoài AA', BB' ( A,B thuộc (O)). Nối AB' cắt (O) ở M và cắt (O') ở N. chứng minh AM=NB'
|
|
Tính: $S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}$.
Tính tổng dãy số theo qui luật
Tính: $S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}$.
|
|
Cho: $\left\{ \begin{array}{l} a^2+b^2=4\\ c^2+d^2=9\\ac+bd\geq 6\end{array} \right.$ Tìm $MAX;MIN$ của $S=a+b-c$.
Tìm Max Min
Cho: $\left\{ \begin{array}{l} a^2+b^2=4\\ c^2+d^2=9\\ac+bd\geq 6\end{array} \right.$Tìm $MAX;MIN$ của $S=a+b-c$.
|
|
Cho $a,b,c$ dương thỏa mãn $12(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})=3+\frac{1}a}+\frac{1}{b}+\frac{1}{c $CMR: $\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\leq \frac{1}{6}$
Lại là bất đẳng thức
Cho $a,b,c$ dương thỏa mãn $12(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})=3+\frac{1}a}+\frac{1}{b}+\frac{1}{c $CMR: $\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\leq \frac{1}{6}$
|