Lượng giác

Tạo bởi: confusion
Danh sách câu hỏi trong sổ
2
phiếu
1đáp án
1K lượt xem

Cho $x, y \in  ( 0; \pi/ 2)$ biết $sin x = 1/3, cos y=2/3$
Tính giá trị biểu thức $A= sin ( \pi - x + y)$
giải hộ mình bài này với ạ! Thanks mn nhiu

Cho $x, y \in ( 0; \pi/ 2)$ biết $sin x = 1/3, cos y=2/3$Tính giá trị biểu thức $A= sin ( \pi - x + y)$
2
phiếu
0đáp án
411 lượt xem

Chứng minh với mọi tam giác $ABC$ thì ta luôn có:
$\frac{\cos (\frac{B}{2}-\frac{C}{2})}{\sin \frac{A}{2}}+\frac{\cos (\frac{C}{2}-\frac{A}{2})}{\sin \frac{B}{2}}+\frac{\cos (\frac{A}{2}-\frac{B}{2})}{\sin \frac{C}{2}}
$$\leq 2(\frac{\tan \frac{A}{2}}{\tan \frac{B}{2}}+\frac{\tan \frac{B}{2}}{\tan\frac{C}{2}}+\frac{\tan \frac{C}{2}}{\tan \frac{A}{2}})$
Giúp mình với!!

Chứng minh với mọi tam giác $ABC$ thì ta luôn có:$\frac{\cos (\frac{B}{2}-\frac{C}{2})}{\sin \frac{A}{2}}+\frac{\cos (\frac{C}{2}-\frac{A}{2})}{\sin \frac{B}{2}}+\frac{\cos (\frac{A}{2}-\frac{B}{2})}{\sin \frac{C}{2}}$$\leq 2(\frac{\tan...
0
phiếu
0đáp án
6K lượt xem

ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN


Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác

1. Định tính tam giác:
a) Tam giác đều:

Đối với loại bài nhận dạng tam giác đều, ta chỉ cần giải bất đẳng thức lượng giác và chỉ ra điều kiện xảy ra dấu bằng của BĐT đó. Ta sẽ xét các ví dụ sau để thấy rõ điều đó.

Ví dụ 1:
CMR $\Delta ABC$đều khi thỏa: ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Lời giải:
Theo Bunhiacốpxki ta có:
${\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 3\left( {{m_a}^2 + {m_b}^2 + {m_c}^2} \right)$
$\begin{array}
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant \frac{9}{4}\left( {{a^2} + {b^2} + {c^2}} \right)  \\
   \Leftrightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}\left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)  \\
\end{array} $
mà   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
$ \Rightarrow {\left( {{m_a} + {m_b} + {m_c}} \right)^2} \leqslant 9{R^2}.\frac{9}{4} = \frac{{81}}{4}{R^2}$
$ \Rightarrow $ ${m_a} + {m_b} + {m_c} = \frac{9}{2}R$
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều $ \Rightarrow $Đpcm.

Ví dụ 2:    
CMR nếu $\sin \frac{A}{2}\sin \frac{B}{2} = \frac{{\sqrt {ab} }}{{4c}}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\frac{{\sqrt {ab} }}{{4c}} \leqslant \frac{{a + b}}{{8c}} = \frac{{2R\left( {\sin A + \sin B} \right)}}{{2R.8\sin C}} = \frac{{2R.2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2}}}{{2R.8.2\sin \frac{C}{2}\cos \frac{C}{2}}} = \frac{{\cos \frac{{A - B}}{2}}}{{8\sin \frac{C}{2}}} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}$
$\begin{array}
   \Rightarrow \sin \frac{A}{2}\sin \frac{B}{2} \leqslant \frac{1}{{8\cos \frac{{A + B}}{2}}}  \\
   \Leftrightarrow 8\cos \frac{{A + B}}{2}\sin \frac{A}{2}\sin \frac{B}{2} \leqslant 1  \\
   \Leftrightarrow 4\cos \frac{{A + B}}{2}\left( {\cos \frac{{A - B}}{2} - \cos \frac{{A + B}}{2}} \right) - 1 \leqslant 0  \\
\end{array} $
$\begin{array}
   \Leftrightarrow 4{\cos ^2}\frac{{A + B}}{2} - 4\cos \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 1 \geqslant 0  \\
   \Leftrightarrow {\left( {2\cos \frac{{A + B}}{2} - \cos \frac{{A - B}}{2}} \right)^2} + {\sin ^2}\frac{{A - B}}{2} \geqslant 0  \\
    \\
\end{array} $
$ \Rightarrow $ Đpcm.
    
Ví dụ 3:
CMR $\Delta ABC$đều khi nó thỏa: $2\left( {{h_a} + {h_b} + {h_c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
Lời giải:
Theo đề bài ta có:
$2.2p\left( {\frac{r}{a} + \frac{r}{b} + \frac{r}{c}} \right) = \left( {a + b + c} \right)\sqrt 3 $
$\begin{array}
   \Leftrightarrow \frac{r}{a} + \frac{r}{b} + \frac{r}{c} = \frac{{\sqrt 3 }}{2}  \\
   \Leftrightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{{\sqrt 3 }}{2}  \\
\end{array} $
Ta lại có:  $\frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} \leqslant \frac{1}{4}\left( {\frac{1}{{\cot \frac{A}{2}}} + \frac{1}{{\cot \frac{B}{2}}}} \right) = \frac{1}{4}\left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)$
Tương tự ta có:
$\frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} = \frac{1}{4}\left( {\tan \frac{B}{2} + \tan \frac{C}{2}} \right)$
$\frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} = \frac{1}{4}\left( {\tan \frac{C}{2} + \tan \frac{A}{2}} \right)$
$\begin{array}
   \Rightarrow \frac{1}{{\cot \frac{A}{2} + \cot \frac{B}{2}}} + \frac{1}{{\cot \frac{B}{2} + \cot \frac{C}{2}}} + \frac{1}{{\cot \frac{C}{2} + \cot \frac{A}{2}}} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right)  \\
   \Rightarrow \frac{{\sqrt 3 }}{2} \leqslant \frac{1}{2}\left( {\tan \frac{A}{2} + t\tan \frac{B}{2} + \tan \frac{C}{2}} \right) \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu thỏa $S = 3Rr\frac{{\sqrt 3 }}{2}$ thì $\Delta ABC$đều.
Lời giải:
Ta có:
$\begin{array}
  S = 2{R^2}\sin A\sin B\sin C = 2.{R^2}.2.2.2.\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
   = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}.4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = r4R\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}  \\
\end{array} $
$ \leqslant r4R\frac{{3\sqrt 3 }}{8} = \frac{{3\sqrt 3 }}{2}Rr$
$ \Rightarrow $ Đpcm.

Ví dụ 5:
CMR $\Delta ABC$đều khi nó thỏa ${m_a}{m_b}{m_c} = pS$
Lời giải:
Ta có:  ${m_a}^2 = \frac{1}{4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) = \frac{1}{4}\left( {{b^2} + {c^2} - 2bc\cos A} \right) \geqslant \frac{1}{2}bc\left( {1 + \cos A} \right) = bc{\cos ^2}\frac{A}{2}$

$\begin{array}
  \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \Rightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}  \\
   \Rightarrow {\cos ^2}A = \frac{{{b^2} + {c^2} - {a^2} + 2bc}}{{4bc}} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{4bc}} = \frac{{p\left( {p - a} \right)}}{{bc}}  \\
   \Rightarrow {m_a} \geqslant \sqrt {p\left( {p - a} \right)}   \\
\end{array} $
Tương tự ta có:
$\begin{array}
  \left\{ \begin{array}
  {m_b} \geqslant \sqrt {p\left( {p - b} \right)}   \\
  {m_c} \geqslant \sqrt {p\left( {p - c} \right)}   \\
\end{array}  \right.  \\
   \Rightarrow {m_a}{m_b}{m_c} \geqslant p\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = pS  \\
\end{array} $
$ \Rightarrow $ Đpcm.

b) Tam giác cân:
Đối với dạng bài nhận dạng tam giác cân, ta cần phải chỉ ra điều kiện xảy ra dấu bằng của bất đẳng thức là khi 2 biến bằng nhau và khác biến thứ ba. Ta xét các ví dụ sau:

Ví dụ 1:
CMR $\Delta ABC$cân khi nó thỏa điều kiện ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2}$ và nhọn.
Lời giải:
Ta có: $\tan A + \tan B = \frac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}} = \frac{{2\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right) + \cos \left( {A - B} \right)}} = \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}}$
Vì $\cos \left( {A - B} \right) \leqslant 1 \Rightarrow \cos \left( {A - B} \right) - \cos C \leqslant 1 - \cos C = 2{\sin ^2}\frac{C}{2}$
$\begin{array}
   \Rightarrow \frac{{2\sin C}}{{\cos \left( {A - B} \right) - \cos C}} \geqslant \frac{{2\sin C}}{{2{{\sin }^2}\frac{C}{2}}} = \frac{{4\sin \frac{C}{2}\cos \frac{C}{2}}}{{2{{\sin }^2}\frac{C}{2}}} = 2\cot \frac{C}{2} = 2\tan \frac{{A + B}}{2}  \\
   \Rightarrow \tan A + \tan B \geqslant 2\tan \frac{{A + B}}{2}  \\
\end{array} $
Từ giả thiết: ${\tan ^2}A + {\tan ^2}B = 2{\tan ^2}\frac{{A + B}}{2} \leqslant 2{\left( {\frac{{\tan A + \tan B}}{2}} \right)^2}$
$\begin{array}
   \Leftrightarrow 2\left( {{{\tan }^2}A + {{\tan }^2}B} \right) \leqslant {\tan ^2}A + {\tan ^2}B + 2\tan A\tan B  \\
   \Leftrightarrow {\left( {\tan A - \tan B} \right)^2} \leqslant 0  \\
   \Leftrightarrow A = B  \\
\end{array} $
$ \Rightarrow $ Đpcm.

Ví dụ 2:
CMR $\Delta ABC$cân khi thỏa ${h_a} = \sqrt {bc} \cos \frac{A}{2}$
Lời giải:
Trong mọi tam giác ta luôn có: ${h_a} \leqslant {l_a} = \frac{{2bc}}{{b + c}}\cos \frac{A}{2}$
Mà $b + c \geqslant 2\sqrt {bc}  \Rightarrow \frac{{2bc}}{{b + c}} \leqslant \frac{{bc}}{{\sqrt {bc} }} = \sqrt {bc} $
$ \Rightarrow \frac{{2bc}}{{b + c}}\cos \frac{A}{2} \leqslant \sqrt {bc} \cos \frac{A}{2} \Rightarrow {h_a} \leqslant \sqrt {bc} \cos \frac{A}{2}$
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 3:
CMR nếu thỏa $r + {r_a} = 4R\sin \frac{B}{2}$ thì $\Delta ABC$cân.
Lời giải:
Ta có:
$\begin{array}
  r + {r_a} = \left( {p - b} \right)\tan \frac{b}{2} + p\tan \frac{B}{2} = \left( {2p - b} \right)\tan \frac{B}{2} = \left( {a + c} \right)\tan \frac{B}{2} = 2R\left( {\sin A + \sin C} \right)\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}}  \\
   = 4R\sin \frac{{A + C}}{2}\cos \frac{{A + C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\cos \frac{B}{2}\cos \frac{{A - C}}{2}\frac{{\sin \frac{B}{2}}}{{\cos \frac{B}{2}}} = 4R\sin \frac{B}{2}\cos \frac{{A - C}}{2} \leqslant 4R\sin \frac{B}{2}  \\
   \Rightarrow r + {r_a} \leqslant 4R\sin \frac{B}{2}  \\
\end{array} $
Đẳng thức xảy ra khi $\Delta ABC$cân $ \Rightarrow $ Đpcm.

Ví dụ 4:
CMR nếu $S = \frac{1}{4}\left( {{a^2} + {b^2}} \right)$ thì $\Delta ABC$cân.
Lời giải:
Ta có: ${a^2} + {b^2} \geqslant 2ab \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant \frac{1}{2}ab \geqslant \frac{1}{2}ab\sin C = S$
$ \Rightarrow \frac{1}{4}\left( {{a^2} + {b^2}} \right) \geqslant S \Rightarrow $$\Delta ABC$cân nếu thỏa đk đề bài.

Ví dụ 5:
CMR $\Delta ABC$cân khi thỏa $2\cos A + \cos B + \cos C = \frac{9}{4}$
Lời giải:
Ta có:
$2\cos A + \cos B + \cos C = 2\left( {1 - 2{{\sin }^2}\frac{A}{2}} \right) + 2\cos \frac{{B + C}}{2}\cos \frac{{B - C}}{2}$
  $\begin{array}
   =  - 4{\sin ^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4} =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} + \frac{1}{4}{\cos ^2}\frac{{B - C}}{2} - \frac{1}{4} + \frac{9}{4}  \\
   =  - {\left( {2\sin \frac{A}{2} - \frac{1}{2}\cos \frac{{B - C}}{2}} \right)^2} - \frac{1}{4}{\sin ^2}\frac{{B - C}}{2} + \frac{9}{4} \leqslant \frac{9}{4}  \\
\end{array} $
Đẳng thức xảy ra khi B=C $ \Rightarrow $ Đpcm.

c) Tam giác vuông:
Đối với dạng bài tập nhận dạng tam giác vuông, ta ít khi cần dùng đến các BĐT lượng giác mà thường là chỉ cần sử dụng các phương pháp biến đổi tương đương là được.    

Ví dụ 1:
Cho tam giác ABC có các góc thỏa mãn hệ thức $3\left( {\cos B + 2\sin C} \right) + 4\left( {\sin B + 2\cos C} \right) = 15$
Chứng minh $\vartriangle $ABC vuông.
Lời giải:
Theo Bunhiacốpxki ta có:
$\left\{ \begin{array}
  3\cos B + 4\sin B \leqslant \sqrt {\left( {{3^2} + {4^2}} \right)\left( {{{\cos }^2}B + {{\sin }^2}B} \right)}  = 5  \\
  6\sin C + 8\cos C \leqslant \sqrt {\left( {{6^2} + {8^2}} \right)\left( {{{\sin }^2}C + {{\cos }^2}C} \right)}  = 10  \\
\end{array}  \right.$
$ \Rightarrow 3\cos B + 4\sin B + 6\sin C + 8\cos C \leqslant 15$
Đẳng thức xảy ra khi và chỉ khi:
$\left\{ \begin{array}
  3\cos B + 4\sin B = 5  \\
  6\sin C + 8\cos C = 10  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \frac{{\cos B}}{3} = \frac{{\sin B}}{4}  \\
  \frac{{\sin C}}{6} = \frac{{\cos C}}{8}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \tan B = \frac{4}{3}  \\
  \cot C = \frac{4}{3}  \\
\end{array}  \right. \Leftrightarrow \tan B = \cot C \Leftrightarrow B + C = \frac{\pi }{2}$
Vậy tam giác ABC vuông tại A.

2. Cực trị lượng giác:
Đây là một lĩnh vực khó, đòi hỏi người giải cần phải tự mình sử dụng khéo léo các bất đẳng thức lượng giác phù hợp cũng như phải có một vốn kiến thức khá lớn về bất đẳng thức để có thể tìm ra đáp án của bài toán.

Ví dụ 1:
Tìm giá trị nhỏ nhất của hàm số:
$f(x,y) = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Với a,b,c,d là các hằng số dương.
Lời giải:
Đặt $f(x,y) = a{f_1} + b{f_2}$ với ${f_1} = \frac{{a{{\sin }^4}x + b{{\cos }^4}y}}{{c{{\sin }^2}x + d{{\cos }^2}y}}$ và ${f_2} = \frac{{a{{\cos }^4}x + b{{\sin }^4}y}}{{c{{\cos }^2}x + d{{\sin }^2}y}}$
Ta có:  $c + d = c\left( {{{\sin }^2}x + {{\cos }^2}x} \right) + d\left( {{{\sin }^2}y + {{\cos }^2}y} \right)$                             
Do đó: $\left( {c + d} \right){f_1} = \left[ {\left( {c{{\sin }^2}x + d{{\cos }^2}y} \right) + \left( {c{{\cos }^2}x + d{{\sin }^2}y} \right)} \right]\left[ {\frac{{{{\sin }^4}x}}{{c{{\sin }^2}x + d{{\cos }^2}y}} + \frac{{{{\cos }^4}x}}{{c{{\cos }^2}x + d{{\sin }^2}y}}} \right]$
$ \geqslant {\left( {\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} \frac{{{{\sin }^2}x}}{{\sqrt {c{{\sin }^2}x + d{{\cos }^2}y} }} + \sqrt {c{{\cos }^2}x + d{{\sin }^2}y} \frac{{{{\cos }^2}x}}{{\sqrt {c{{\cos }^2}x + d{{\sin }^2}y} }}} \right)^2} = 1$
$ \Rightarrow {f_1} \geqslant \frac{1}{{c + d}}$. Tương tự $ \Rightarrow {f_2} \geqslant \frac{1}{{c + d}}$. Vậy $f(x,y) = a{f_1} + b{f_2} \geqslant \frac{{a + b}}{{c + d}}$

Ví dụ 2:
Tìm giá trị nhỏ nhất của biểu thức: $P = \cos 3A + \cos 3B - \cos 3C$
Lời giải:
Ta có: $\cos 3C = \cos 3\left[ {\pi  - \left( {A + B} \right)} \right] = \cos \left[ {3\pi  - 3\left( {A - B} \right)} \right] =  - \cos 3\left( {A + B} \right)$ nên
$\begin{array}
  P = \cos 3A + \cos 3B + \cos 3\left( {A + B} \right) = 2\cos 3\left( {\frac{{A + B}}{2}} \right)\cos 3\left( {\frac{{A - B}}{2}} \right) + 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) - 1  \\
   \Rightarrow P + \frac{3}{2} = 2{\cos ^2}3\left( {\frac{{A + B}}{2}} \right) + 2\cos \left( {\frac{{A - B}}{2}} \right)\cos 3\left( {\frac{{A + B}}{2}} \right) + \frac{1}{2} = f(x,y)  \\
\end{array} $
$\Delta \prime  = {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) - 1 \leqslant 0 \Rightarrow P \geqslant  - \frac{3}{2}$
$\begin{array}
  P =  - \frac{3}{2} \Leftrightarrow \left\{ \begin{array}
  \Delta \prime  = 0  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  {\cos ^2}3\left( {\frac{{A - B}}{2}} \right) = 1  \\
  \cos 3\left( {\frac{{A + B}}{2}} \right) =  - \frac{1}{2}\cos 3\left( {\frac{{A - B}}{2}} \right)  \\
\end{array}  \right.  \\
   \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \cos 3A =  - \frac{1}{2}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  A = B  \\
  \left[ \begin{array}
  A = \frac{{2\pi }}{9}  \\
  A = \frac{{4\pi }}{9}  \\
\end{array}  \right.  \\
\end{array}  \right.  \\
\end{array} $
Vậy ${P_{\min }} =  -  - \frac{3}{2} \Leftrightarrow \left[ \begin{array}
  A = B = \frac{{2\pi }}{9},C = \frac{{5\pi }}{9}  \\
  A = B = \frac{{4\pi }}{9},C = \frac{\pi }{9}  \\
\end{array}  \right.$

Ví dụ 3:
Tìm giá trị lớn nhất của biểu thức: $P = \frac{{{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C}}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}}$
Lời giải:
Ta có:
$P = \frac{3}{{{{\cos }^2}A + {{\cos }^2}B + {{\cos }^2}C}} - 1$
$\begin{array}
   = \frac{3}{{3 - \left( {{{\sin }^2}A + {{\sin }^2}B + {{\sin }^2}C} \right)}} - 1  \\
   \leqslant \frac{3}{{3 - \frac{9}{4}}} - 1 = 3  \\
\end{array} $
Do đó ${P_{\max }} = 3 \Leftrightarrow \Delta ABC$đều.

Ví dụ 4:
Tìm giá trị lớn nhất, nhỏ nhất của $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x} $
Lời giải:
Điều kiện: $\sin x \geqslant 0,\cos x \geqslant 0$
Ta có: $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \leqslant \sqrt[4]{{\sin x}} \leqslant 1$
Dấu bằng xảy ra $ \Leftrightarrow \left\{ \begin{array}
  \sin x = 1  \\
  \cos x = 0  \\
\end{array}  \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi $
Mặt khác $y = \sqrt[4]{{\sin x}} - \sqrt {\cos x}  \geqslant  - \cos x \geqslant  - 1$
Dấu bằng xảy ra $\left\{ \begin{array}
  \sin x = 0  \\
  \cos x = 1  \\
\end{array}  \right. \Leftrightarrow x = 2k\pi $
Vậy $\left\{ \begin{array}
  {y_{\max }} = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi   \\
  {y_{\min }} =  - 1 \Leftrightarrow x = 2k\pi   \\
\end{array}  \right.$

Ví dụ 5:
Cho hàm số $y = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$. Hãy tìm Max $y$trên miền xác định của nó.
Lời giải:
Vì $\sin x$và $\cos x$ không đồng thời bằng 1 nên $y$ xác định trên R.
${Y_0}$ thuộc miền giá trị của hàm số khi và chỉ khi ${Y_0} = \frac{{2 + \cos x}}{{\sin x + \cos x - 2}}$ có nghiệm.
$ \Leftrightarrow {Y_0}\sin x + \left( {{Y_0} - 1} \right)\cos x = 2{Y_0} + 2$ có nghiệm.
$\begin{array}
  {\left( {2{Y_0} + 2} \right)^2} \leqslant {Y_0}^2 + {\left( {{Y_0} - 1} \right)^2}  \\
   \Leftrightarrow 2{Y_0}^2 + 10{Y_0} + 3 \leqslant 0  \\
   \Leftrightarrow \frac{{ - 5 - \sqrt {19} }}{2} \leqslant {Y_0} \leqslant \frac{{ - 5 + \sqrt {19} }}{2}  \\
\end{array} $
Vậy ${y_{\max }} = \frac{{ - 5 + \sqrt {19} }}{2}$

Bài tập rèn luyện
CMR $\Delta ABC$đều khi nó thỏa mãn một trong các đẳng thức sau:
1)    $\cos A\cos B + \cos B\cos C + \cos C\cos A = \frac{3}{4}$
2)    $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$
3)    $\frac{1}{{\sin 2A}} + \frac{1}{{\sin 2B}} + \frac{1}{{\sin 2C}} = \frac{{\sqrt 3 }}{2} + \frac{1}{2}\tan A\tan B\tan C$
4)    ${\left( {\frac{{{a^2} + {b^2} + {c^2}}}{{\cot A + \cot B + \cot C}}} \right)^2} = \frac{{{a^2}{b^2}{c^2}}}{{\tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2}}}$
5)    $\frac{{a\cos A + b\cos B + c\cos C}}{{a + b + c}} = \frac{1}{2}$
6)    ${l_a}{l_b}{l_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
7)    ${m_a}{m_b}{m_c} = abc\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
8)    $bc\cot \frac{A}{2} + ca\cot \frac{B}{2} + ab\cot \frac{C}{2} = 12S$
9)    $\left( {1 + \frac{1}{{\sin A}}} \right)\left( {1 + \frac{1}{{\sin B}}} \right)\left( {1 + \frac{1}{{\sin C}}} \right) = 5 + \frac{{26\sqrt 3 }}{9}$

ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN

ÁP DỤNG BĐT LƯỢNG GIÁC VÀO GIẢI MỘT SỐ BÀI TOÁN Trong chuyên đề này, ta sẽ tìm hiểu về cách áp dụng bất đẳng thức lượng giác vào giải các bài toán định tính các tam giác đều, cân, vuông... và giải cực trị lượng giác 1. Định tính tam...
0
phiếu
0đáp án
41K lượt xem

CÁC ĐẲNG THỨC VÀ BẤT ĐẲNG THỨC CƠ SỞ TRONG TAM GIÁC


Đây là các đẳng thức và bất đẳng thức quen thuộc rất cần thiết cho việc chứng minh các bất đẳng thức lượng giác trong tam giác cũng như trong các ứng dụng của chúng. Ta cũng có thể xem đây như là một phần  kiến thức cơ sở cần cho quá trình học toán của chúng ta.

I. CÁC ĐẲNG THỨC CƠ SỞ TRONG TAM GIÁC
•      $\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R$
•     ${a^2} = {b^2} + {c^2} - 2bc\cos A$
       $\begin{array}
  {b^2} = {c^2} + {a^2} - 2ca\cos B  \\
  {c^2} = {a^2} + {b^2} - 2ab\cos C  \\
\end{array} $
•     $a = b\cos C + c\cos B$
       $\begin{array}
  b = c\cos A + a\cos C  \\
  c = a\cos B + b\cos A  \\
\end{array} $
•     $S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}$
 $\begin{array}
   = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C  \\
   = \frac{{abc}}{{4R}} = 2{R^2}\sin A\sin B\sin C = pr  \\
   = \left( {p - a} \right){r_a} = \left( {p - b} \right){r_b} = \left( {p - c} \right){r_c}  \\
   = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}   \\
\end{array} $
•     ${m_a}^2 = \frac{{2{b^2} + 2{c^2} - {a^2}}}{4}$           
 $\begin{array}
  {m_b}^2 = \frac{{2{c^2} + 2{a^2} - {b^2}}}{4}  \\
  {m_c}^2 = \frac{{2{a^2} + 2{b^2} - {c^2}}}{4}  \\
\end{array} $
•    ${l_a}^2 = \frac{{2bc\cos \frac{A}{2}}}{{b + c}}$
  $\begin{array}
  {l_b}^2 = \frac{{2ca\cos \frac{B}{2}}}{{c + a}}  \\
  {l_c}^2 = \frac{{2ab\cos \frac{C}{2}}}{{a + b}}  \\
\end{array} $
•    $r = \left( {p - a} \right)\tan \frac{A}{2} = \left( {p - b} \right)\tan \frac{B}{2} = \left( {p - c} \right)\tan \frac{C}{2} = 4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
•    $\frac{{a - b}}{{a + b}} = \frac{{\tan \left( {\frac{{A - B}}{2}} \right)}}{{\tan \left( {\frac{{A + B}}{2}} \right)}}$
$\frac{{b - c}}{{b + c}} = \frac{{\tan \left( {\frac{{B - C}}{2}} \right)}}{{\tan \left( {\frac{{B + C}}{2}} \right)}}$
$\frac{{c - a}}{{c + a}} = \frac{{\tan \left( {\frac{{C - A}}{2}} \right)}}{{\tan \left( {\frac{{C + A}}{2}} \right)}}$
•    $\cot A = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}$
  $\begin{array}
  \cot B = \frac{{{c^2} + {a^2} - {b^2}}}{{4S}}  \\
  \cot C = \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}  \\
\end{array} $
$\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}$
•    $\sin \frac{A}{2} = \sqrt {\frac{{\left( {p - b} \right)\left( {p - c} \right)}}{{bc}}} $
$\begin{array}
  \sin \frac{B}{2} = \sqrt {\frac{{\left( {p - c} \right)\left( {p - a} \right)}}{{ca}}}   \\
  \sin \frac{C}{2} = \sqrt {\frac{{\left( {p - a} \right)\left( {p - b} \right)}}{{ab}}}   \\
\end{array} $
•    $\cos \frac{A}{2} = \sqrt {\frac{{p\left( {p - a} \right)}}{{bc}}} $
$\begin{array}
  \cos \frac{B}{2} = \sqrt {\frac{{p\left( {p - b} \right)}}{{ca}}}   \\
  \cos \frac{C}{2} = \sqrt {\frac{{p\left( {p - c} \right)}}{{ab}}}   \\
\end{array} $
•    $\tan \frac{A}{2} = \sqrt {\frac{{\left( {p - b} \right)\left( {p - c} \right)}}{{p\left( {p - a} \right)}}} $
  $\begin{array}
  \tan \frac{B}{2} = \sqrt {\frac{{\left( {p - c} \right)\left( {p - a} \right)}}{{p\left( {p - b} \right)}}}   \\
  \tan \frac{C}{2} = \sqrt {\frac{{\left( {p - a} \right)\left( {p - b} \right)}}{{p\left( {p - c} \right)}}}   \\
\end{array} $
•    $\sin A + \sin B + \sin C = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = \frac{p}{R}$
  $\begin{array}
  \sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C  \\
  {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 2\left( {1 + \cos A\cos B\cos C} \right)  \\
  \cos A + \cos B + \cos C = 1 + 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = 1 + \frac{r}{R}  \\
  {\cos ^2}A + {\cos ^2}B + {\cos ^2}C = 1 - 2\cos A\cos B\cos C  \\
  \tan A + \tan B + \tan C = \tan A\tan B\tan C  \\
  \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}  \\
  \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1  \\
  \cot A\cot B + \cot B\cot C + \cot C\cot A = 1  \\
\end{array} $

II. CÁC BĐT CƠ SỞ TRONG TAM GIÁC
•   
 $\begin{array} \left| {a - b} \right| < c < a + b\\

  
  \left| {b - c} \right| < a < b + c  \\
  \left| {c - a} \right| < b < c + a  \\
\end{array} $
•    $a \leqslant b \Leftrightarrow A \leqslant B$
  $\begin{array}
  b \leqslant c \Leftrightarrow B \leqslant C  \\
  c \leqslant a \Leftrightarrow C \leqslant A  \\
\end{array} $
•    $\cos A + \cos B + \cos C \leqslant \frac{3}{2}$
  $\begin{array}
  \sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}  \\
  \tan A + \tan B + \tan C \geqslant 3\sqrt 3   \\
  \cot A + \cot B + \cot C \geqslant \sqrt 3   \\
\end{array} $
•    $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} \leqslant \frac{{3\sqrt 3 }}{2}$
  $\begin{array}
  \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \leqslant \frac{3}{2}  \\
  \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
  \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \geqslant 3\sqrt 3   \\
\end{array} $
•    ${\cos ^2}A + {\cos ^2}B + {\cos ^2}C \geqslant \frac{3}{4}$
   ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C \leqslant \frac{9}{4}$
        ${\tan ^2}A + {\tan ^2}B + {\tan ^2}C \geqslant 9$
${\cot ^2}A + {\cot ^2}B + {\cot ^2}C \geqslant 1$
•    ${\cos ^2}\frac{A}{2} + {\cos ^2}\frac{B}{2} + {\cos ^2}\frac{C}{2} \leqslant \frac{9}{4}$
   $\begin{array}
  {\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2} \geqslant \frac{3}{4}  \\
  {\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + {\tan ^2}\frac{C}{2} \geqslant 1  \\
  {\cot ^2}\frac{A}{2} + {\cot ^2}\frac{B}{2} + {\cot ^2}\frac{C}{2} \geqslant 9  \\
\end{array} $
•    $\cos A\cos B\cos C \leqslant \frac{1}{8}$
   $\begin{array}
  \sin A\sin B\sin C \leqslant \frac{{3\sqrt 3 }}{8}  \\
  \tan A\tan B\tan C \geqslant 3\sqrt 3   \\
  \cot A\cot B\cot C \leqslant \frac{1}{{3\sqrt 3 }}  \\
\end{array} $
•    $\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} \leqslant \frac{{3\sqrt 3 }}{8}$
  $\begin{array}
  \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \leqslant \frac{1}{8}  \\
  \tan \frac{A}{2}\tan \frac{B}{2}\tan \frac{C}{2} \leqslant \frac{1}{{3\sqrt 3 }}  \\
  \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} \geqslant 3\sqrt 3   \\
\end{array} $
•    $\cos 2A + \cos 2B + \cos 2C \geqslant  - \frac{3}{2}$
   $\sin 2A + \sin 2B + \sin 2C \leqslant \frac{{3\sqrt 3 }}{2}$
•    $\frac{1}{{\cos \frac{A}{2}}} + \frac{1}{{\cos \frac{B}{2}}} + \frac{1}{{\cos \frac{C}{2}}} \geqslant 2\sqrt 3 $
$\frac{1}{{\sin \frac{A}{2}}} + \frac{1}{{\sin \frac{B}{2}}} + \frac{1}{{\sin \frac{C}{2}}} \geqslant 2\sqrt 3 $

III. BÀI TẬP RÈN LUYỆN
Bài 1.
Cho $\Delta ABC.$ Đường phân giác của các góc A,B,C cắt đường tròn ngoại tiếp lần lượt tại ${A_1},{B_1},{C_1}$. CMR:  ${S_{ABC}} \leqslant {S_{{A_1}{B_1}{C_1}}}$
Lời giải:
Gọi R là bán kính đường tròn ngoại tiếp thì nó cũng là bán kính đường tròn ngoại tiếp $\Delta {A_1}{B_1}{C_1}$.
Bất đẳng thức cần chứng minh tương đương với:
   $2{R^2}\sin A\sin B\sin C \leqslant 2{R^2}\sin {A_1}\sin {B_1}\sin {C_1}$         (1)
Do   ${A_1} = \frac{{B + C}}{2},{B_2} = \frac{{C + A}}{2},{C_1} = \frac{{A + B}}{2}$  nên:
$\begin{array}
  (1) \Leftrightarrow \sin A\sin B\sin C \leqslant \sin \frac{{B + C}}{2}\sin \frac{{C + A}}{2}\sin \frac{{A + B}}{2}  \\
   \Leftrightarrow 8\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2} \leqslant c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2}(2)  \\
\end{array} $
Vì $c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2} > 0$ nên  
(2)  $ \Leftrightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \leqslant \frac{1}{8} \Rightarrow $đpcm.                                                  
Đẳng thức xảy ra $ \Leftrightarrow \Delta ABC$  đều.

Bài 2.
CMR trong mọi tam giác ta đều có:
$\sin {\text{A}}\sin B + \sin B\sin C + \sin C\sin A \leqslant \frac{7}{4} + 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
Lời giải:
Ta có :
$\cos A + \cos B + \cos C = 1 + 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
Bất đẳng thức đã cho tương đương với:
$\sin A\sin B + \sin B\sin C + \sin C\sin A \leqslant \frac{3}{4} + \cos A + c{\text{os}}B + \cos C(1)$
Mà:
$\begin{array}
  \cos A = \sin B\sin C - \cos B\cos C  \\
  \cos B = \sin C\sin A - \cos C\cos A  \\
  \cos C = \sin B\sin A - \cos A\cos B  \\
\end{array} $
Nên   (1) $ \Leftrightarrow \cos A\cos B + \cos B\cos C + \cos C\cos A \leqslant \frac{3}{4}$  (2)
Thật vậy hiển nhiên ta có:
$\cos A\cos b + \cos B\cos C + \cos C\cos A \leqslant \frac{1}{3}{(\cos A + \cos B + \cos C)^2}$   (3)
Mặt khác ta có:   $\cos A + \cos B + \cos C \leqslant \frac{3}{2}$
$ \Rightarrow (3)$ đúng $ \Rightarrow (2)$$ \Rightarrow $ đpcm.
Đẳng thức xảy ra $ \Leftrightarrow \Delta ABC$ đều.

Bài 3.
CMR với mọi $\Delta ABC$ bất kì ta có:
         ${a^2} + {b^2} + {c^2} \geqslant 4\sqrt 3 S + {(a - b)^2} + {(b - c)^2} + {(c - a)^2}$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với:
$2(ab + bc + ac) \geqslant 4\sqrt 3 S + {a^2} + {b^2} + {c^2}$   (1)
Ta có:
$\begin{array}
  \cot A = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}}  \\
  \cot B = \frac{{{c^2} + {a^2} - {b^2}}}{{4S}}  \\
  \cot C = \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}  \\
\end{array} $
Khi đó:   
$\begin{array}
  (1) \Leftrightarrow 4S\left( {\frac{1}{{\sin A}} + \frac{1}{{\sin B}} + \frac{1}{{\sin C}}} \right) \geqslant 4\sqrt 3 S + 4S(\cot A + \cot B + \cot C)  \\
   \Leftrightarrow \left( {\frac{1}{{\sin A}} - \cot A} \right) + \left( {\frac{1}{{\sin B}} - \cot B} \right) + \left( {\frac{1}{{\sin C}} - \cot C} \right) \geqslant \sqrt 3   \\
   \Leftrightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3   \\
\end{array} $
$ \Rightarrow $ đpcm.
Đẳng thức xảy ra khi và chỉ khi tam giác ABC đều. 

Bài 4.
Cho $\Delta ABC$ bất kì. CMR: $R + r \geqslant \sqrt[4]{3}\sqrt S $
Lời giải:
Ta có:
$\begin{array}
  R = \frac{{abc}}{{4S}} = \frac{{2{R^3}\sin A\sin B\sin C}}{8} = \sqrt {\frac{S}{{2\sin A\sin B\sin C}}}   \\
  r = \frac{S}{p} = \frac{S}{{R(\sin A + \sin B + \sin C)}} = \frac{{\sqrt 8 \sqrt {2\sin A\sin B\sin C} }}{{\sin A + \sin B + \sin C}}  \\
\end{array} $
Vậy:
 $R + r = \frac{1}{2}\sqrt {\frac{S}{{2\sin AsinB\sin C}}}  + \frac{1}{2}\sqrt {\frac{S}{{2\sin A\sin B\sin C}}}  + \frac{{\sqrt 8 \sqrt {2\sin A\sin B\sin C} }}{{\sin A + \sin B + \sin C}}$
Theo BĐT Cô-si ta có:
$\frac{{R + r}}{3} \geqslant \sqrt[3]{{\frac{{S\sqrt S \sqrt {\sin A\sin B\sin C} }}{{8\sin A\sin B\sin C(\sin A + \sin B + \sin C)}}}}$
Mà:
$\begin{array}
  \sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}  \\
  \sin A\sin B\sin C \leqslant \frac{{3\sqrt 3 }}{8}  \\
   \Rightarrow R + r \geqslant \sqrt[3]{{\frac{{4S\sqrt S }}{{4\sqrt[4]{{27}}.3\sqrt 3 }}}} = \sqrt[4]{3}\sqrt S   \\
\end{array} $
$ \Rightarrow $ đpcm.

Bài 5.
Cho $ \Rightarrow $ bất kì. CMR:
$\frac{{{a^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{A}{2}}} + \frac{{{b^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{B}{2}}} + \frac{{{c^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{C}{2}}} \geqslant {\left( {\frac{{abc\sqrt 6 }}{{3R}}} \right)^4}$
Lời giải:
Áp dụng BCS ta có:
$\frac{{{a^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{A}{2}}} + \frac{{{b^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{B}{2}}} + \frac{{{c^8}}}{{c{\text{o}}{{\text{s}}^2}\frac{C}{2}}} \geqslant \frac{{{{({a^4} + {b^4} + {c^4})}^2}}}{{c{\text{o}}{{\text{s}}^2}\frac{A}{2} + c{\text{o}}{{\text{s}}^2}\frac{B}{2} + c{\text{o}}{{\text{s}}^2}\frac{C}{2}}}$
Mà:
$\begin{array}
  c{\text{o}}{{\text{s}}^2}\frac{A}{2} + c{\text{o}}{{\text{s}}^2}\frac{B}{2} + c{\text{o}}{{\text{s}}^2}\frac{C}{2} \leqslant \frac{9}{4}  \\
  {\left( {\frac{{abc}}{4}} \right)^4} = {(16{S^2})^2}  \\
\end{array} $
Vì thế ta chỉ cần chứng minh:  ${a^4} + {b^4} + {c^4} \geqslant 16{S^2}$
Trước hết ta có: ${a^4} + {b^4} + {c^4} \geqslant abc(a + b + c)(1)$
Thật vậy:
$\begin{array}
  (1) \Leftrightarrow {a^2}({a^2} - bc) + {b^2}({b^2} - ca) + {c^2}({c^2} - ab) \geqslant 0  \\
   \Leftrightarrow \left[ {{a^2} + {{(b + c)}^2}} \right]{(b - c)^2} + \left[ {{b^2} + {{(c + a)}^2}} \right]{(c - a)^2} + \left[ {{c^2} + {{(a + b)}^2}} \right]{(a - b)^2} \geqslant 0  \\
\end{array} $
(đúng)
Mặt khác ta cũng có:
$16{S^2} = 16p(p - a)(p - b)(p - c) = (a + b + c)(a + b - c)(b + c - a)(c + a - b)(2)$
Từ (1),(2) thì suy ra ta phải chứng minh:
$abc \geqslant (a + b - c)(b + c - a)(a + c - b)(3)$
Đặt :
$\begin{array}
  x = a + b - c  \\
  y = b + c - a  \\
  z = c + a - b  \\
\end{array} $
Vì a,b,c là ba cạnh của một tam giác nên x , y , z > 0
Khi đó theo BĐT Cô-si thì:
$abc = \frac{{(x + y)(y + z)(z + x)}}{8} \geqslant \frac{{(2\sqrt {xy} )(2\sqrt {yz} )(2\sqrt {xz} )}}{8} \\
            = xyz = (a + b - c)(b + c - a)(c + a - b)$
$ \Rightarrow $ (3) đúng   (đpcm)

CÁC ĐẲNG THỨC VÀ BẤT ĐẲNG THỨC CƠ SỞ TRONG TAM GIÁC

CÁC ĐẲNG THỨC VÀ BẤT ĐẲNG THỨC CƠ SỞ TRONG TAM GIÁC Đây là các đẳng thức và bất đẳng thức quen thuộc rất cần thiết cho việc chứng minh các bất đẳng thức lượng giác trong tam giác cũng như trong các ứng dụng của chúng. Ta cũng có thể xem đây như...
0
phiếu
0đáp án
23K lượt xem

SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC


Trong chuyên đề này, ta sẽ tìm hiểu về 4 bất đẳng thức cổ điển và ứng dụng của chúng trong giải bất đẳng thức lượng giác. Các bất đẳng thức bao gồm:
1. Bất đẳng thức Cauchy (AM – GM)
2. Bất đẳng thức Bunhiacốpxki
3. Bất đẳng thức Jensen
4. Bất đẳng thức Chebyshev

1. Bất đẳng thức Cauchy (AM – GM):
Với mọi số thực không âm ${a_1},{a_2},....,{a_n}$ ta luôn có:
              $\frac{{{a_1} + {a_2} + ... + {a_n}}}{n} \geqslant \sqrt[n]{{{a_1}{a_2}...{a_n}}}$

Ví dụ 1:
Cho A,B,C là 3 đỉnh của 1 tam giác nhọn. CMR:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Lời giải:
Vì $\tan \left( {A + B} \right) =  - \tan C \Leftrightarrow \frac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} =  - \tan C$
$ \Rightarrow \tan A + \tan B + \tan C = \tan A.\tan B.\tan C$
Tam giác ABC nhọn nên tanA, tanB, tanC dương.
Theo Cauchy ta có:
            $\tan A + \tan B + \tan C \geqslant 3\sqrt[3]{{\tan A.\tan B.\tan C}} = 3\sqrt[3]{{\tan A + \tan B + \tan C}}$
            $ \Rightarrow {\left( {\tan A + \tan B + \tan C} \right)^2} \geqslant 27\left( {\tan A + \tan B + \tan C} \right)$
    $ \Rightarrow \tan A + \tan B + \tan C \geqslant 3\sqrt 3 $
Đẳng thức xảy ra$ \Leftrightarrow A = B = C \Leftrightarrow \Delta ABC$đều.

Ví dụ 2 :
Cho $\Delta ABC$ nhọn. CMR: $\cot A + \cot B + \cot C \geqslant \sqrt 3 $
Lời giải:
Ta luôn có:
         $\begin{array}
  \cot \left( {A + B} \right) =  - \cot C  \\
   \Leftrightarrow \frac{{\cot A.\cot B - 1}}{{\cot A + \cot B}} =  - \cot C  \\
   \Leftrightarrow \cot A.\cot B + \cot B.\cot C + \cot C.\cot A = 1  \\
\end{array} $
Khi đó:
         ${\left( {\cot A - \cot B} \right)^2} + {\left( {\cot B - \cot C} \right)^2} + {\left( {\cot C - \cot A} \right)^2} \geqslant 0$
    $ \Leftrightarrow {\left( {\cot A + \cot B + \cot C} \right)^2} \geqslant 3\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right) = 3$
    $ \Rightarrow \cot A + \cot B + \cot C \geqslant \sqrt 3 $
Dấu bằng xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ nhọn ta  có:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} \\
                           \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$
Lời giải:
Ta có:  $\frac{{\cos A}}{{2\cos \frac{A}{2}}} = \sin \frac{A}{2}\cot \frac{A}{2}$
$ \Rightarrow \frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} = \left( {\sin \frac{A}{2}\sin \frac{B}{2}} \right)\left( {\frac{3}{4}\cot A\cot B} \right)$
Theo Cauchy:
$\frac{{\frac{3}{4}\cos A\cos B}}{{4\cos \frac{A}{2}\cos \frac{B}{2}}} \leqslant {\left( {\frac{{\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B}}{2}} \right)^2}$
$ \Rightarrow \sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \frac{3}{4}\cot A\cot B} \right)$
Tương tự ta có:
$\sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{B}{2}\sin \frac{C}{2} + \frac{3}{4}\cot B\cot C} \right)$
$S = pr \Rightarrow \frac{8}{3}{\left( {\frac{S}{{2r}}} \right)^2} = \frac{{{{(a + b + c)}^2}}}{6}$
Cộng theo vế ta được:
$\sqrt {\frac{{\cos A\cos B}}{{\cos \frac{A}{2}\cos \frac{B}{2}}}}  + \sqrt {\frac{{\cos B\cos C}}{{\cos \frac{B}{2}\cos \frac{C}{2}}}}  + \sqrt {\frac{{\cos C\cos A}}{{\cos \frac{C}{2}\cos \frac{A}{2}}}} $
$ \leqslant \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} \\                          + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}\left( {\cot A\cot B + \cot B\cot C + \cot C\cot A} \right)$
$ = \frac{2}{{\sqrt 3 }}\left( {\sin \frac{A}{2}\sin \frac{B}{2} + \sin \frac{B}{2}\sin \frac{C}{2} + \sin \frac{C}{2}\sin \frac{A}{2}} \right) + \frac{{\sqrt 3 }}{2}$    $ \Rightarrow $ Đpcm.

2. Bất đẳng thức Bunhiacốpxki:
Với 2 bộ số ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$ ta luôn có:
             ${\left( {{a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n}} \right)^2} \leqslant \left( {{a_1}^2 + {a_2}^2 + ... + {a_n}^2} \right)\left( {{b_1}^2 + {b_2}^2 + ... + {b_n}^2} \right)$
Nhận xét:
-Nếu như với bất đẳng thức Cauchy, ta luôn phải nhớ điều kiện của các biến là phải không âm thì đối với bất đẳng thức Bunhiacốpxki, ta có thể áp dụng cho các biến là số thực.
-Bất đẳng thức Cauchy và Bunhiacốpxki là 2 bất đẳng thức tỏ ra rất hiệu quả khi dùng để chứng minh các bất đẳng thức lượng giác. Ta sẽ xét các ví dụ sau:

Ví dụ 1:
CMR với mọi $a,b,\alpha $ ta có:
$\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$  
Lời giải:
Ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) = {\sin ^2}\alpha  + \left( {a + b} \right)\sin \alpha \cos \alpha  + ab{\cos ^2}\alpha $
            $ = \frac{{1 - \cos 2\alpha }}{2} + \frac{{\left( {a + b} \right)}}{2}\sin 2\alpha  + ab\frac{{1 + \cos 2\alpha }}{2}$
            $ = \frac{1}{2}\left( {1 + ab + \left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha } \right)$    (1)
Theo Bunhiacốpxki ta có:
        $A\sin x + B\cos x \leqslant \sqrt {{A^2} + {B^2}} $       (2)
Áp dụng (2) ta có:
        $\left( {a + b} \right)\sin 2\alpha  + \left( {ab - 1} \right)\cos 2\alpha  \leqslant \sqrt {{{\left( {a + b} \right)}^2} + {{\left( {ab - 1} \right)}^2}}  = \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} $       (3)
Thay (3) vào (1) ta được:
        $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant \frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right)$     (4)
Ta chứng minh bất đẳng thức sau đây đúng với mọi a,b:
        $\frac{1}{2}\left( {1 + ab + \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$     (5)
Thật vậy:
         (5)$ \Leftrightarrow \frac{1}{2} + \frac{{ab}}{2} + \frac{1}{2}\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant 1 + \frac{{{a^2} + {b^2}}}{4} + \frac{{ab}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{{a^2} + {b^2} + 2}}{2}$
              $ \Leftrightarrow \sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}  \leqslant \frac{{\left( {{a^2} + 1} \right) + \left( {{b^2} + 1} \right)}}{2}$       (6)
Theo Cauchy thì (6) hiển nhiên đúng$ \Rightarrow $ (5) đúng với mọi a,b.
Từ (1) và (5) : với mọi $a,b,\alpha $ ta có: $\left( {\sin \alpha  + a\cos \alpha } \right)\left( {\sin \alpha  + b\cos \alpha } \right) \leqslant 1 + {\left( {\frac{{a + b}}{2}} \right)^2}$
Đẳng thức xảy ra khi ở (1) và (6) dấu bằng đồng thời xảy ra
$ \Leftrightarrow \left\{ \begin{array}
  {a^2} = {b^2}  \\
  \frac{{a + b}}{{\sin 2\alpha }} = \frac{{ab - 1}}{{\cos 2\alpha }}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \tan \alpha  = \frac{{a + b}}{{ab - 1}}  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  \left| a \right| = \left| b \right|  \\
  \alpha  = \frac{1}{2}\arctan \frac{{a + b}}{{ab - 1}} + k\frac{\pi }{2}  \\
\end{array}  \right.$ 

Ví dụ 2:
CMR với mọi $\Delta ABC$ ta có:
   $\sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}} $   
với x,y,z là khoảng cách từ điểm M bất kì nằm bên trong $\Delta ABC$ tới 3 cạnh AB, BC, CA của tam giác.
Lời giải:
Ta có:
         $\begin{array}
  {S_{ABC}} = {S_{MAB}} + {S_{MBC}} + {S_{MCA}}  \\
   \Leftrightarrow \frac{{{S_{MAB}}}}{{{S_{ABC}}}} + \frac{{{S_{MBC}}}}{{{S_{ABC}}}} + \frac{{{S_{MCA}}}}{{{S_{ABC}}}} = 1  \\
   \Leftrightarrow \frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}} = 1  \\
\end{array} $
$ \Rightarrow {h_a} + {h_b} + {h_c} = \left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{z}{{{h_c}}} + \frac{y}{{{h_b}}} + \frac{x}{{{h_a}}}} \right)$
Theo Bunhiacốpxki thì:
$\sqrt x  + \sqrt y  + \sqrt z  = \sqrt {{h_a}} \frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \sqrt {{h_b}} \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \sqrt {{h_c}} \frac{{\sqrt z }}{{\sqrt {{h_c}} }} \\
                               \leqslant \sqrt {\left( {{h_a} + {h_b} + {h_c}} \right)\left( {\frac{{\sqrt x }}{{\sqrt {{h_a}} }} + \frac{{\sqrt y }}{{\sqrt {{h_b}} }} + \frac{{\sqrt z }}{{\sqrt {{h_c}} }}} \right)}  = \sqrt {{h_a} + {h_b} + {h_c}} $
mà $S = \frac{1}{2}a{h_a} = \frac{1}{2}ab\sin C \Rightarrow {h_a} = b\sin C$, ${h_b} = c\sin A$, ${h_c} = a\sin B$
$ \Rightarrow \sqrt {{h_a} + {h_b} + {h_c}}  = \sqrt {\left( {a\sin B + b\sin C + c\sin A} \right)}  = \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}} $
$ \Rightarrow \sqrt x  + \sqrt y  + \sqrt z  \leqslant \sqrt {\frac{{ab}}{{2R}} + \frac{{bc}}{{2R}} + \frac{{ca}}{{2R}}}  \leqslant \sqrt {\frac{{{a^2} + {b^2} + {c^2}}}{{2R}}}  \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\left\{ \begin{array}
  a = b = c  \\
  x = y = z  \\
\end{array}  \right. \Leftrightarrow \Delta ABC$đều và M là tâm đường tròn nội tiếp$\Delta ABC$.

3. Bất đẳng thức Jensen:
Cho $f:{R^ + } \to R$ thỏa mãn $f(x) + f(y) \geqslant 2f\left( {\frac{{x + y}}{2}} \right)$  $\forall x,y \in {R^ + }$. Khi đó với mọi  ${x_1},{x_2},....,{x_n} \in {R^ + }$ ta có bất đẳng thức sau:
                          $f({x_1}) + f({x_2}) + ...... + f({x_n}) \geqslant nf\left( {\frac{{{x_1} + {x_2} + ... + {x_n}}}{n}} \right)$

-Bất đẳng thức Jensen thật sự là một công cụ chuyên dùng cho chứng minh các bất đẳng thức lượng giác. Tuy không phải là một bất đẳng thức chặt nhưng nếu thấy có những dấu hiệu của BĐT Jensen, chúng ta nên dùng ngay.
 
Ví dụ 1:
Chứng minh rằng với mọi$\Delta ABC$ ta có
                      $\sin A + \sin B + \sin C \leqslant \frac{{3\sqrt 3 }}{2}$
Lời giải:
Xét $f(x) = \sin x$ với $x \in \left( {0,\pi } \right)$ $ \Rightarrow f(x)$ là hàm lồi. Theo Jensen ta có:
$f(A) + f(B) + f(C) \leqslant 3f\left( {\frac{{A + B + C}}{3}} \right) = 3\sin \frac{\pi }{3} = \frac{{3\sqrt 3 }}{2} \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$đều ta có:
           $\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \sqrt 3 $
Lời giải:
Xét $f(x) = \tan x$ với$x \in \left( {0,\frac{\pi }{2}} \right)$
$\begin{array}
(1) \Leftrightarrow {a^2}({a^2} - bc) + {b^2}({b^2} - ca) + {c^2}({c^2} - ab) \geqslant 0  \\
\Leftrightarrow \left[ {{a^2} + {{(b + c)}^2}} \right]{(b - c)^2} + \left[ {{b^2} + {{(c + a)}^2}} \right]{(c - a)^2} + \left[ {{c^2} + {{(a + b)}^2}} \right]{(a - b)^2} \geqslant 0  \\
\end{array} $ là hàm lồi. Theo Jensen ta có:
$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right) = 3\sin \frac{\pi }{6} = \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ta có:
$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} + \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geqslant \frac{3}{2} + \sqrt 3 $
Lời giải:
Xét $f(x) = \sin x + \tan x$ với $ \Rightarrow $là hàm lồi. Theo Jensen ta có:

$f\left( {\frac{A}{2}} \right) + f\left( {\frac{B}{2}} \right) + f\left( {\frac{C}{2}} \right) \geqslant 3f\left( {\frac{{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}}{3}} \right)$$ = 3\left( {\tan \frac{\pi }{6} + \sin \frac{\pi }{6}} \right) = \frac{3}{2} + \sqrt 3  \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

4. Bất đẳng thức Chebyshev:
Với 2 dãy số thực đơn điệu cùng chiều ${a_1},{a_2},...,{a_n}$ và ${b_1},{b_2},...,{b_n}$  ta có:
             ${a_1}{b_1} + {a_2}{b_2} + ... + {a_n}{b_n} \geqslant \frac{1}{n}\left( {{a_1} + {a_2} + ... + {a_n}} \right)\left( {{b_1} + {b_2} + ... + {b_n}} \right)$

Ví dụ 1:
Chứng minh rằng với mọi $\Delta ABC$ ta có
               $\frac{{aA + bB + cC}}{{a + b + c}} \geqslant \frac{\pi }{3}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c \Leftrightarrow A \leqslant B \leqslant C$

Theo Chebyshev thì
$\left( {\frac{{a + b + c}}{3}} \right)\left( {\frac{{A + B + C}}{3}} \right) \leqslant \frac{{aA + bB + cC}}{3}$
$ \Rightarrow \frac{{aA + bB + cC}}{3} \geqslant \frac{{A + B + C}}{3} = \frac{\pi }{3}$
Đẳng thức xảy ra khi $\Delta ABC$đều.

Ví dụ 2:
Chứng minh rằng với mọi $\Delta ABC$ ta có
              $\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} \leqslant \frac{\tan A\tan B\tan C}{3}$
Lời giải:
Không mất tổng quát giả sử$A \geqslant B \geqslant C$
               $ \Rightarrow \left\{ \begin{array}
  \tan A \geqslant \tan B \geqslant \tan C  \\
  \cos A \leqslant \cos B \leqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$ \Leftrightarrow \frac{{\sin A + \sin B + \sin C}}{{\cos A + \cos B + \cos C}} \leqslant \frac{{\tan A + \tan B + \tan C}}{3}$
Mà $\tan A + \tan B + \tan C = \tan A\tan B\tan C$$ \Rightarrow $Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

Ví dụ 3:
Chứng minh rằng với mọi $\Delta ABC$ ta có
$2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}}$
Lời giải:
Không mất tổng quát giả sử $a \leqslant b \leqslant c$
                    $ \Rightarrow \left\{ \begin{array}
  \sin A \leqslant \sin B \leqslant \sin C  \\
  \cos A \geqslant \cos B \geqslant \cos C  \\
\end{array}  \right.$
Theo Chebyshev ta có:
$\left( {\frac{{\sin A + \sin B + \sin C}}{3}} \right)\left( {\frac{{\cos A + \cos B + \cos C}}{3}} \right) \geqslant \frac{{\sin A\cos A + \sin B\cos B + \sin C\cos C}}{3}$
$ \Leftrightarrow 2\left( {\sin A + \sin B + \sin C} \right) \geqslant \frac{3}{2}\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C}} \Rightarrow $ Đpcm.
Đẳng thức xảy ra khi và chỉ khi $\Delta ABC$đều.

BÀI TẬP:
Bài 1.

CMR với mọi tam giác ABC ta có:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
Theo BĐT Cô-si  ta có:
$\frac{{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}}{3} \geqslant \sqrt[3]{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Mặt khác:
$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} = \frac{{c{\text{os}}\frac{A}{2}c{\text{os}}\frac{B}{2}c{\text{os}}\frac{C}{2}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{{\frac{1}{4}(\sin A + \sin B + \sin C)}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}} = \frac{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2} + \sin \frac{B}{2}c{\text{os}}\frac{B}{2} + \sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}{{2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
                 $ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
Suy ra:
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right)$
$ \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\sin \frac{A}{2}\sin \frac{A}{2}\sin \frac{C}{2}\sin \frac{A}{2}c{\text{os}}\frac{A}{2}\sin \frac{B}{2}c{\text{os}}\frac{B}{2}\sin \frac{C}{2}c{\text{os}}\frac{C}{2}}}}}{{\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}}}$
$ = \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}}$  (1)
Mà ta cũng có:
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2} \geqslant 3\sqrt 3 $
$ \Rightarrow \frac{9}{2}.\sqrt[3]{{\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)$
Từ (1),(2) :
$\left( {\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}} \right)\left( {\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
$ \Rightarrow $ đpcm.

Bài 2.
Cho $\Delta ABC$ nhọn .CMR:
              $\left( {\cos A + \cos B + \cos C} \right)\left( {\operatorname{t} a{\text{nA}} + \tan B + \tan C} \right) \geqslant \frac{{9\sqrt 3 }}{2}$
Lời giải:
 Vì $\Delta ABC$ nhọn nên $\cos A,\cos B,\cos C,\operatorname{t} {\text{anA}},\tan B,\tan C$ đều dương.
Theo AM-GM ta có:
$\begin{array}
  \frac{{\cos A + \cos B + \cos C}}{3} \geqslant \sqrt[3]{{\cos A\cos B\cos C}}  \\
  \operatorname{t} a{\text{nA}} + \tan B + \tan C = \operatorname{t} a{\text{nA}}\tan B\tan C = \frac{{\sin A\sin B\sin C}}{{\cos A\cos B\cos C}}  \\
\end{array} $
$ = \frac{{\frac{1}{4}(\sin 2A + \sin 2B + \sin 2C)}}{{\cos A\cos B\cos C}} = \frac{{\sin A\cos A + \sin B\cos b + \sin C\cos C}}{{2\cos A\cos B\cos C}}$
$ \geqslant \frac{3}{2}.\frac{{\sqrt[3]{{\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{2\cos A\cos B\cos C}}$
Suy ra:
$\begin{array}
  (\cos A + \cos B + \cos C)(\operatorname{t} a{\text{nA}}\tan B\tan C)  \\
   \geqslant \frac{9}{2}.\frac{{\sqrt[3]{{\cos A\cos B\cos C\sin A\cos A\sin B\cos B\sin C\cos C}}}}{{\cos A\cos B\cos C}}  \\
   = \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}}(1)  \\
\end{array} $
Mặt khác:
$\begin{array}
  \tan {\text{A}}\tan B\tan C \geqslant 3\sqrt 3   \\
   \Rightarrow \frac{9}{2}.\sqrt[3]{{\operatorname{t} a{\text{nA}}\tan B\tan C}} \geqslant \frac{9}{2}.\sqrt[3]{{3\sqrt 3 }} = \frac{{9\sqrt 3 }}{2}(2)  \\
\end{array} $
Từ (1),(2) suy ra:
$(\cos A + \cos B + \cos C)(\tan {\text{A}}\tan B\tan C) \geqslant \frac{{9\sqrt 3 }}{2}$  $ \Rightarrow $ đpcm.

Bài 4.
Cho tam giác ABC bất kì .CMR:
$\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} \geqslant 4 - \frac{{2r}}{R}$
Lời giải:
Ta có S=$\frac{{abc}}{{4R}} = pr = \sqrt {p(p - a)(p - b)(p - c)} $
$\begin{array}
   \Rightarrow \frac{{2r}}{R} = \frac{{8{S^2}}}{{pabc}} = \frac{{{a^2}b + a{b^2} + {b^2}c + b{c^2} + {c^2}a + c{a^2} - {a^3} - {b^3} - {c^3} - 2abc}}{{abc}}  \\
   \Rightarrow 4 - \frac{{2r}}{R} = \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + 6 - (\frac{a}{b} + \frac{b}{a} + \frac{b}{c} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c}) \leqslant \frac{{{a^3} + {b^3} + {c^3}}}{{abc}}  \\
\end{array} $
Suy ra đpcm

Bài 5.
Cho tam tam giác ABC.CMR
$(\frac{a}{{\cos A}} + \frac{b}{{\cos B}} - c)(\frac{b}{{\cos b}} + \frac{c}{{\cos C}} - a)(\frac{c}{{\cos C}} + \frac{a}{{\cos A}} - b) \geqslant 27abc$
Lời giải:
Bất đẳng thức cần chứng minh tương đương với: $\begin{array}
  (\frac{{\sin C}}{{\cos A\cos B}} - \sin C)(\frac{{\sin A}}{{\cos B\cos C}} - \sin A)(\frac{{\sin B}}{{\cos C\cos A}} - \sin B) \geqslant 27\sin A\sin B\sin C  \\
   \Leftrightarrow \frac{{1 - \cos A\cos B}}{{\cos A\cos B}}.\frac{{1 - \cos B\cos C}}{{\cos B\cos C}}.\frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant 27  \\
\end{array} $
Đặt x = tanA/2,y = tanB/2,z = tanC/2, khi đó ta có
$\cos A = \frac{{1 - {x^2}}}{{1 + {x^2}}},\cos B = \frac{{1 - {y^2}}}{{1 + {y^2}}},\cos C = \frac{{1 - {z^2}}}{{1 + {z^2}}}$
Và $\tan A = \frac{{2x}}{{1 - {x^2}}},\tan B = \frac{{2y}}{{1 - {y^2}}},\tan C = \frac{{2z}}{{1 - {z^2}}}$
Khi đó :$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} = \frac{{2({x^2} + {y^2})}}{{(1 - {x^2})(1 - {y^2})}}$ mặt khác :${x^2} + {y^2} \geqslant 2xy$ nên:
$\frac{{1 - \cos A\cos B}}{{\cos A\cos B}} \geqslant \frac{{2x}}{{1 - {x^2}}}.\frac{{2y}}{{1 - {y^2}}} = \tan A\tan B$    (1)
Tương tự ta có:
$\begin{array}
  \frac{{1 - \cos B\cos C}}{{\cos B\cos C}} \geqslant \tan B\tan C  \\
  \frac{{1 - \cos C\cos A}}{{\cos C\cos A}} \geqslant \tan C\tan A  \\
\end{array} $
Nhân vế theo vế (1) (2) và (3) ta được đpcm

SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC

SỬ DỤNG BĐT CỔ ĐIỂN ĐỂ CHỨNG MINH BĐT LƯỢNG GIÁC Trong chuyên đề này, ta sẽ tìm hiểu về 4 bất đẳng thức cổ điển và ứng dụng của chúng trong giải bất đẳng thức lượng giác. Các bất đẳng thức bao gồm: 1. Bất đẳng thức Cauchy (AM – GM) 2. Bất đẳng...
1
phiếu
1đáp án
2K lượt xem

Tìm giá trị các biểu thức
$1.Q=\tan^2 \frac{\pi}{12}+\tan^2 \frac{3\pi}{12}+\tan^2 \frac{5\pi}{12}$
$2.R=\sin^4 \frac{\pi}{16}+\sin^4 \frac{3\pi}{16}+\sin^4 \frac{5\pi}{16}+\sin^4  \frac{7\pi}{16}$
Bài 113047

Tìm giá trị các biểu thức$1.Q=\tan^2 \frac{\pi}{12}+\tan^2 \frac{3\pi}{12}+\tan^2 \frac{5\pi}{12}$$2.R=\sin^4 \frac{\pi}{16}+\sin^4 \frac{3\pi}{16}+\sin^4 \frac{5\pi}{16}+\sin^4 \frac{7\pi}{16}$
7
phiếu
3đáp án
3K lượt xem

Giải phương trình:
$\cos [\frac{\pi }{2}\ cos(x-\frac{\pi }{4}]=\frac{\sqrt{2} }{2} $
Giải phương trình

Giải phương trình:$\cos [\frac{\pi }{2}\ cos(x-\frac{\pi }{4}]=\frac{\sqrt{2} }{2} $
3
phiếu
1đáp án
1K lượt xem

Cho tam giác $ABC$ bất kỳ với $3$ góc ở đỉnh là $A, B, C$ đều nhọn. Chứng minh rằng
                  $\frac{2}{3}\left( \sin A + \sin B + \sin C\right) + \frac{1}{3}\left( \tan A + \tan B + \tan C \right) > \pi $
Bài 101054

Cho tam giác $ABC$ bất kỳ với $3$ góc ở đỉnh là $A, B, C$ đều nhọn. Chứng minh rằng $\frac{2}{3}\left( \sin A + \sin B + \sin C\right) + \frac{1}{3}\left( \tan A + \tan B + \tan C \right) > \pi $

Trang trước12 153050mỗi trang