Cực trị

Tạo bởi: confusion
Danh sách câu hỏi trong sổ
10
phiếu
1đáp án
1K lượt xem

Cho x,y,z là các số thực dương thỏa mãn $x\geq y\geq z$ và $32-3x^{2}=z^{2}=16-4y^{2}$.
Tìm GTLN của biểu thức $P=xy+yz+zx$
Tìm max...

Cho x,y,z là các số thực dương thỏa mãn $x\geq y\geq z$ và $32-3x^{2}=z^{2}=16-4y^{2}$.Tìm GTLN của biểu thức $P=xy+yz+zx$
12
phiếu
2đáp án
1K lượt xem

Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt:
$M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
Cực trị

Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt:$M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
4
phiếu
2đáp án
1K lượt xem

Cho 2 số dương $x$ và $y$ có tổng bằng 1.
Tìm GTNN của biểu thức $B = (1 - \frac{1}{x^{2}} )(1 - \frac{1}{y^{2}} )$
lop 9

Cho 2 số dương $x$ và $y$ có tổng bằng 1.Tìm GTNN của biểu thức $B = (1 - \frac{1}{x^{2}} )(1 - \frac{1}{y^{2}} )$
9
phiếu
5đáp án
2K lượt xem

BÀI1: Cho $x,y>0$ và $ x+y \ge4$. TÌM GTNN của $P=\frac{3x^2+4}{4x}   +  \frac{2+y^3}{y^2}$
BÀI2: Cho $x\ge2$, $y\ge3$,$z\ge4$  Tìm gtln của $P= \frac{xy\sqrt{z-4}   +  yz\sqrt{x-2}   +  xz\sqrt{y-3}}{xyz}$
BÀI 3: CHO $x,y,z>0$ và $x+y+z=1$ tìm gtln của $P= \sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}$
BÀI 4: cho $x,y,z>0$ và $x+y+z=\frac 34$ tìm gtln của $P= \sqrt[3]{x+3y}+ \sqrt[3]{y+3z}+ \sqrt[3]{z+3x}$
MN GIÚP VS NHA!

BÀI1: Cho $x,y>0$ và $ x+y \ge4$. TÌM GTNN của $P=\frac{3x^2+4}{4x} + \frac{2+y^3}{y^2}$BÀI2: Cho $x\ge2$, $y\ge3$,$z\ge4$ Tìm gtln của $P= \frac{xy\sqrt{z-4} + yz\sqrt{x-2} + xz\sqrt{y-3}}{xyz}$BÀI 3: CHO $x,y,z>0$ và $x+y+z=1$ tìm...
10
phiếu
1đáp án
939 lượt xem

cho các số dương x,y,z thỏa $xyz=4$ . tìm GTNN của biểu thức

P= $\frac{x^{3}}{\sqrt{(1+x^{4}\sqrt{x})(1+y^{4}\sqrt{y})}}+\frac{y^{3}}{\sqrt{(1+y^{4}\sqrt{y})(1+z^{4}\sqrt{z})}}+\frac{z^{3}}{\sqrt{(1+z^{4}\sqrt{z})(1+x^{4}\sqrt{x}})}$
cho tớ xin cái BĐT cô si biến dạng để lm câu này =)))

cho các số dương x,y,z thỏa $xyz=4$ . tìm GTNN của biểu thứcP= $\frac{x^{3}}{\sqrt{(1+x^{4}\sqrt{x})(1+y^{4}\sqrt{y})}}+\frac{y^{3}}{\sqrt{(1+y^{4}\sqrt{y})(1+z^{4}\sqrt{z})}}+\frac{z^{3}}{\sqrt{(1+z^{4}\sqrt{z})(1+x^{4}\sqrt{x}})}$
6
phiếu
1đáp án
955 lượt xem

Cho 2 so duong $x,y$ thay doi thoa man $xy=2 $
Tim GTNN cua bieu thuc M = $\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}$
nhanh nha

Cho 2 so duong $x,y$ thay doi thoa man $xy=2 $Tim GTNN cua bieu thuc M = $\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}$
7
phiếu
0đáp án
588 lượt xem

Cho x,y,z là độ dài 3 cạnh của một tam giác
Tìm giá trị nhỏ nhất của biểu thức:
$P=\sqrt{1+\frac{24(y+z-x)}{x}}$+ $\sqrt{1+\frac{24(z+x-y)}{y}}$ + $\sqrt{1+\frac{24(x+y-z)}{z}}$
GTNN nè mấy bạn

Cho x,y,z là độ dài 3 cạnh của một tam giácTìm giá trị nhỏ nhất của biểu thức:$P=\sqrt{1+\frac{24(y+z-x)}{x}}$+ $\sqrt{1+\frac{24(z+x-y)}{y}}$ + $\sqrt{1+\frac{24(x+y-z)}{z}}$
13
phiếu
4đáp án
4K lượt xem

Tìm GTLN $T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$

Cho $\begin{cases}a, b, c>0 \\ a+b+c=1 \end{cases}$

Tìm GTLN $T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$
6
phiếu
0đáp án
594 lượt xem

cho $\begin{cases}a, b, c \geq 0 \\ c \leq a\leq b \end{cases}$
tìm GTNN
         $S = \frac{1}{a^{2}+ c^{2}}  +  \frac{1}{b^{2} + c^{2}}  + \sqrt{a+b+c}$

ứng dụng đạo hàm tìm GTNN

cho $\begin{cases}a, b, c \geq 0 \\ c \leq a\leq b \end{cases}$tìm GTNN $S = \frac{1}{a^{2}+ c^{2}} + \frac{1}{b^{2} + c^{2}} + \sqrt{a+b+c}$
8
phiếu
2đáp án
1K lượt xem

Tìm số thực m lớn nhất sao cho tồn tại các số thực không âm x,y,z thỏa mãn:
\begin{cases}x+y+z=4 \\ x^3+y^3+z^3+8(xy^2+yz^2+zx^2)=m \end{cases}
Tìm số thực m lớn nhất sao cho tồn tại các số thực không âm x,y,z thỏa mãn: \begin{cases}x+y+z=4 \\ x^3+y^3+z^3+8(xy^2+yz^2+zx^2)=m \end{cases}

Tìm số thực m lớn nhất sao cho tồn tại các số thực không âm x,y,z thỏa mãn:\begin{cases}x+y+z=4 \\ x^3+y^3+z^3+8(xy^2+yz^2+zx^2)=m \end{cases}
4
phiếu
1đáp án
1K lượt xem

Tìm $GTLN, GTNN$ của$ A= x^2+y^2$ biết rằng:
  $x^2(x^2+2y^2-3)+(y^2-2)^2=1$

thử làm nè mấy bạn

Tìm $GTLN, GTNN$ của$ A= x^2+y^2$ biết rằng: $x^2(x^2+2y^2-3)+(y^2-2)^2=1$
10
phiếu
0đáp án
625 lượt xem

Cho 3 số thực dương $a,b,c$ thỏa mãn điều kiện : 
         $\frac{4a}{b}(1+\frac{2c}{b})+\frac{b}{a}(1+\frac{c}{a})=6$
Tìm Min :
  $P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab}{c(2a+b)}$
Cực trị

Cho 3 số thực dương $a,b,c$ thỏa mãn điều kiện : $\frac{4a}{b}(1+\frac{2c}{b})+\frac{b}{a}(1+\frac{c}{a})=6$Tìm Min : $P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab}{c(2a+b)}$
12
phiếu
0đáp án
716 lượt xem

giả sử phương trình bậc ba sau có ba nghiệm là $a,b,c$
                   $x^{3}-3x^{2}+mx+n=0$       (với $m >0,n<0$)
Tìm min của biểu thức:
                           $A=\frac{a^{2}}{a+2b^{2}}+\frac{b^{2}}{b+2c^{2}}+\frac{c^{2}}{c+2a^{2}}$
[ không tiêu đề... ]

giả sử phương trình bậc ba sau có ba nghiệm là $a,b,c$ $x^{3}-3x^{2}+mx+n=0$ (với $m >0,n<0$)Tìm min của biểu thức: $A=\frac{a^{2}}{a+2b^{2}}+\frac{b^{2}}{b+2c^{2}}+\frac{c^{2}}{c+2a^{2}}$
13
phiếu
1đáp án
993 lượt xem

Số thực $x$ thay đổi thỏa mãn đk $x^{2}+(3 - x)^{2}\geq5$.Tìm GTNN của biểu thức $P=x^{4}+(3 - x)^{4}+6x^{2}(3 -x)^{2}$
Tìm cực trị

Số thực $x$ thay đổi thỏa mãn đk $x^{2}+(3 - x)^{2}\geq5$.Tìm GTNN của biểu thức $P=x^{4}+(3 - x)^{4}+6x^{2}(3 -x)^{2}$
10
phiếu
0đáp án
529 lượt xem

cho $x,y,z\geq0$ thỏa mãn $(x+y-1)^{2}+(y+z-1)^{2}+(z+x-1)^{2}=27$
 Tìm $Min,Max$ $x^{4}+y^{4}+z^{4}$
BĐT

cho $x,y,z\geq0$ thỏa mãn $(x+y-1)^{2}+(y+z-1)^{2}+(z+x-1)^{2}=27$ Tìm $Min,Max$ $x^{4}+y^{4}+z^{4}$
16
phiếu
1đáp án
1K lượt xem

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$
tìm min của:
$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$
ủng hộ mình nha...!?
đã từng thi rồi nè....kĩ thuật sử dụng bất đẳng thức...chọn điểm rơi...!?

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$tìm min của:$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$ủng hộ mình nha...!?
18
phiếu
0đáp án
1K lượt xem

cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)
Tìm min của: 
$A=\frac{1}{1+a^{n}}+\frac{1}{1+(ab)^{n}}+\frac{1}{1+(abc)^{n}}+\frac{1}{1+(abcd)^{n}}+\frac{1}{1+(abcde)^{n}}$

(thấy hay thì vote up giùm nha mọi người....!?)
khá hay...cũng khá cơ bản....!?

cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)Tìm min của: $A=\frac{1}{1+a^{n}}+\frac{1}{1+(ab)^{n}}+\frac{1}{1+(abc)^{n}}+\frac{1}{1+(abcd)^{n}}+\frac{1}{1+(abcde)^{n}}$(thấy hay thì vote up giùm...
9
phiếu
2đáp án
1K lượt xem

Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$
Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
Help!!!!

Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
5
phiếu
2đáp án
1K lượt xem

$x^{2}+2y^{2}+3z^{2}=1$
CMR : $x+y+z \leq \sqrt{\frac{11}{6}}$
hộ cái

$x^{2}+2y^{2}+3z^{2}=1$CMR : $x+y+z \leq \sqrt{\frac{11}{6}}$
9
phiếu
1đáp án
962 lượt xem

cho cac so thuc a,b$\in \left[ {1;2} \right]$. tìm   GTLN cua bieu thuc :

$$P=\frac{(a+b)^2}{c^2+4(ab+bc+ca)}$$

A

cho cac so thuc a,b$\in \left[ {1;2} \right]$. tìm GTLN cua bieu thuc :$$P=\frac{(a+b)^2}{c^2+4(ab+bc+ca)}$$
10
phiếu
0đáp án
256 lượt xem

 cho $x,y,z$ là các số thực dương thỏa mãn $x^{2}+y^{2}+z^{2}=8$ 
Tìm $Min, Max$ H=$|x^{3}-y^{3}|+|y^{3}-z^{3}|+|z^{3}-x^{3}|$
BĐT [đang ẩn]

cho $x,y,z$ là các số thực dương thỏa mãn $x^{2}+y^{2}+z^{2}=8$ Tìm $Min, Max$ H=$|x^{3}-y^{3}|+|y^{3}-z^{3}|+|z^{3}-x^{3}|$
13
phiếu
4đáp án
2K lượt xem

Cho $x,y>0$ và $x+y+1=3xy.$ Tìm GTLN:
$P=\frac{3x}{y(x+1)}+\frac{3y}{x(y+1)}-\frac{1}{x^2}-\frac{1}{y^2}$
Cho $x,y>0$ và $x+y+1=3xy.$ Tìm GTLN: $P=\frac{3x}{y(x+1)}+\frac{3y}{x(y+1)}-\frac{1}{x^2}-\frac{1}{y^2}$

Cho $x,y>0$ và $x+y+1=3xy.$ Tìm GTLN:$P=\frac{3x}{y(x+1)}+\frac{3y}{x(y+1)}-\frac{1}{x^2}-\frac{1}{y^2}$
10
phiếu
2đáp án
2K lượt xem

Cho $x;y;z>1$ và $xy+yz+zx=xyz$
Tìm min : $A=\Sigma \frac{x-1}{y^2}$
Matenmatics reminds you of invisible forms of the sound

Cho $x;y;z>1$ và $xy+yz+zx=xyz$Tìm min : $A=\Sigma \frac{x-1}{y^2}$
6
phiếu
2đáp án
1K lượt xem

Tìm GTLN của biểu thức $$M=abc$$
Cho $a,b,c \in \mathbb{N}^*$ thõa mãn $a+b+c=100$

Tìm GTLN của biểu thức $$M=abc$$
10
phiếu
1đáp án
4K lượt xem

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.
Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$. Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
3
phiếu
1đáp án
808 lượt xem
9
phiếu
1đáp án
1K lượt xem

Cho a,b,c thỏa mãn abc=1

Tìm giá trị nhỏ nhất của biểu thức sau :
 
P = $\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}$
Lại cực trị!!!!!!

Cho a,b,c thỏa mãn abc=1Tìm giá trị nhỏ nhất của biểu thức sau : P = $\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}$
8
phiếu
1đáp án
955 lượt xem

Cho ba số x,y,z $\epsilon$ $\left[ {1;3} \right]$ .Tìm giá trị nhỏ nhất của biểu thức: P=$\frac{36x}{yz} + \frac{2y}{xz} + \frac{z}{xy}$
vừa lặt được cái đề!!!!!!!!!!!!!!!!!!!

Cho ba số x,y,z $\epsilon$ $\left[ {1;3} \right]$ .Tìm giá trị nhỏ nhất của biểu thức: P=$\frac{36x}{yz} + \frac{2y}{xz} + \frac{z}{xy}$
12
phiếu
1đáp án
1K lượt xem

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca=7abc$
Tìm GTNN : 
   $S=\frac{8a^{4}+1}{a^{2}}+\frac{108b^{5}+1}{b^{2}}+\frac{16c^{6}+1}{c^{2}}$
Cực trị

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca=7abc$Tìm GTNN : $S=\frac{8a^{4}+1}{a^{2}}+\frac{108b^{5}+1}{b^{2}}+\frac{16c^{6}+1}{c^{2}}$
19
phiếu
1đáp án
1K lượt xem

cho các số thực x,y,z,t,s, thỏa mãn $\left\{ \begin{array}{l} 0<x\leq y \leq z \leq t\leq s \\ x+y+z+t+s=1 \end{array} \right.$
tìm GTLN  của T= $xyz+yzt+zts+tsx+sxy$
ai kèm mình bđt với nào. hứa sẽ ngoan <3

cho các số thực x,y,z,t,s, thỏa mãn $\left\{ \begin{array}{l} 0<x\leq y \leq z \leq t\leq s \\ x+y+z+t+s=1 \end{array} \right.$tìm GTLN của T= $xyz+yzt+zts+tsx+sxy$