Bất đẳng thức

Tạo bởi: sunshine
Danh sách câu hỏi trong sổ
9
phiếu
0đáp án
991 lượt xem

Cho $x,y\geq 0 và x+y\leq1$. Chứng minh:
$\frac{1}{\sqrt{x^{2}+1}}+\frac{1}{\sqrt{y^{2}+1}}\geq \frac{1}{(x+y)^{2}+1}+1$
quà 2/5

Cho $x,y\geq 0 và x+y\leq1$. Chứng minh:$\frac{1}{\sqrt{x^{2}+1}}+\frac{1}{\sqrt{y^{2}+1}}\geq \frac{1}{(x+y)^{2}+1}+1$
10
phiếu
0đáp án
886 lượt xem

Cho $x,y,z \geq 0 và x^{3}+y^{3}+z^{3}=3$. Tìm GTNN của 
P=$\frac{x^{3}}{3y+1}+\frac{y^{3}}{3z+1}+\frac{z^{3}}{3x+1}$
Bài đăng toàn bị lỗi

Cho $x,y,z \geq 0 và x^{3}+y^{3}+z^{3}=3$. Tìm GTNN của P=$\frac{x^{3}}{3y+1}+\frac{y^{3}}{3z+1}+\frac{z^{3}}{3x+1}$
3
phiếu
1đáp án
2K lượt xem

Cho : x, y, z là các số thực ko âm. CMR : 
$3(x^2+y^2+z^2)\geq (x+y+z)(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})+(x-y)^2+(y-z)^2+(z-x)^2\geq (x+y+z)^2$


hô hô mấy mem HTn đâu rồi ra đây xử lý giùm bt này

Cho : x, y, z là các số thực ko âm. CMR : $3(x^2+y^2+z^2)\geq (x+y+z)(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})+(x-y)^2+(y-z)^2+(z-x)^2\geq (x+y+z)^2$
7
phiếu
0đáp án
695 lượt xem

Cho $a,b,c$ không âm và một số thực $p$ thỏa mãn $-2\sqrt[3]{2} \leq p \leq 2$.Chứng minh rằng:

$$\frac{a^3+(p+2)abc}{a^3+(b+c)^3+3pabc}+\frac{b^3+(p+2)abc}{b^3+(c+a)^3+3pabc}+\frac{c^3+(p+2)abc}{c^3+(a+b)^3+3pabc}\geq 1$$
bđtilove(1)

Cho $a,b,c$ không âm và một số thực $p$ thỏa mãn $-2\sqrt[3]{2} \leq p \leq 2$.Chứng minh rằng:$$\frac{a^3+(p+2)abc}{a^3+(b+c)^3+3pabc}+\frac{b^3+(p+2)abc}{b^3+(c+a)^3+3pabc}+\frac{c^3+(p+2)abc}{c^3+(a+b)^3+3pabc}\geq 1$$
5
phiếu
0đáp án
689 lượt xem

Cho $a,b,c$ không âm thỏa mãn $ab+bc+ac \neq 0$. Chứng minh rằng:

$$\frac{1}{\sqrt{3a^2+bc}}+\frac{1}{\sqrt{3b^2+ac}}+\frac{1}{\sqrt{3c^2+ac}}\geq \frac{\sqrt{3}+2}{\sqrt{3(ab+bc+ac)}}$$
BĐTilove

Cho $a,b,c$ không âm thỏa mãn $ab+bc+ac \neq 0$. Chứng minh rằng:$$\frac{1}{\sqrt{3a^2+bc}}+\frac{1}{\sqrt{3b^2+ac}}+\frac{1}{\sqrt{3c^2+ac}}\geq \frac{\sqrt{3}+2}{\sqrt{3(ab+bc+ac)}}$$
3
phiếu
1đáp án
2K lượt xem

 cho các số dương a,b,c,d . Chứng minh rằng: a2b5+b2c5+c2d5+d2a51a3+1b3+1c3+1d3 
Chiuu, Jin , Ngốc và cả thảy mem HTN tiếp chiêu bất đẳng bộ pháp đây. ( chú thích: giải hậu tạ )

cho các số dương a,b,c,d . Chứng minh rằng: a2b5+b2c5+c2d5+d2a5≥1a3+1b3+1c3+1d3" role="presentation" style="display: inline-block; line-height: 0; font-size: 18.06px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr;...
8
phiếu
1đáp án
1K lượt xem

Cho a,b,c là các số thực không âm thỏa mãn $a+b+c=1$.CMR:
$(2ab+3bc+4ca-5abc)(a^{3}+b^{3}+c^{3})\leq \frac{1}{3}.$
BĐT...#

Cho a,b,c là các số thực không âm thỏa mãn $a+b+c=1$.CMR:$(2ab+3bc+4ca-5abc)(a^{3}+b^{3}+c^{3})\leq \frac{1}{3}.$
11
phiếu
1đáp án
1K lượt xem

Cho các số thực dương a,b,c thỏa mãn đk abc=1.CMR:
$\frac{1}{(a+1)^{2}+b^{2}+1}+\frac{1}{(b+1)^{2}+c^{2}+1}+\frac{1}{(c+1)^{2}+a^{2}+1}\leq  \frac{1}{2}$
Ẩn phụ thần công kích....luyện tiếp đi Nam ca

Cho các số thực dương a,b,c thỏa mãn đk abc=1.CMR:$\frac{1}{(a+1)^{2}+b^{2}+1}+\frac{1}{(b+1)^{2}+c^{2}+1}+\frac{1}{(c+1)^{2}+a^{2}+1}\leq \frac{1}{2}$
11
phiếu
3đáp án
2K lượt xem

Cho 3 số dương x,y,z thỏa mãn:$x+3y+5z\leq 3$.Cmr:
$3xy.\sqrt{625z^{4}+4}+15yz.\sqrt{x^{4}+4}+5zx.\sqrt{81y^{4}+4}\geq 45\sqrt{5}xyz$
Ẩn phụ thần công kích nè Nam ca...!!!

Cho 3 số dương x,y,z thỏa mãn:$x+3y+5z\leq 3$.Cmr:$3xy.\sqrt{625z^{4}+4}+15yz.\sqrt{x^{4}+4}+5zx.\sqrt{81y^{4}+4}\geq 45\sqrt{5}xyz$
10
phiếu
3đáp án
2K lượt xem

Cho $a,b,c>0.$ CMR: $T=\frac{a}{3a+b+c}+\frac{b}{3b+c+a}+\frac{c}{3c+b+a}\leq \frac{3}{5}$
Bài này khá thú vị

Cho $a,b,c>0.$ CMR: $T=\frac{a}{3a+b+c}+\frac{b}{3b+c+a}+\frac{c}{3c+b+a}\leq \frac{3}{5}$
3
phiếu
1đáp án
1K lượt xem

Chứng minh: $\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\leq \sqrt{9-(x+y+z)^2}$
Chứng minh: $\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\leq \sqrt{9-(x+y+z)^2}$

Chứng minh: $\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\leq \sqrt{9-(x+y+z)^2}$
6
phiếu
1đáp án
1K lượt xem

cho $a,b,c\in \left[0 {;} 2\right],ab+bc+ca=2$ .tìm $Min$
P=$\frac{1}{(a+b)^{2}}+\frac{16}{c^{4}}+\frac{abc}{2}$
BĐT nha mn!!!

cho $a,b,c\in \left[0 {;} 2\right],ab+bc+ca=2$ .tìm $Min$P=$\frac{1}{(a+b)^{2}}+\frac{16}{c^{4}}+\frac{abc}{2}$
0
phiếu
0đáp án
498 lượt xem

Cho $\left\{ \begin{array}{l} a,b,c\geq \\ abc=9 \end{array} \right..$ Chừng minh:
            $a^3+b^3+c^3>a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$
Cho $\left\{ \begin{array}{l} a,b,c\geq \\ abc=9 \end{array} \right..$ Chừng minh: $a^3+b^3+c^3>a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$

Cho $\left\{ \begin{array}{l} a,b,c\geq \\ abc=9 \end{array} \right..$ Chừng minh: $a^3+b^3+c^3>a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}$
3
phiếu
1đáp án
1K lượt xem

Cho $-1\leq a,b,c\leq 2;a+b+c\geq 0$. Chứng minh:
                $ab+bc+ca\geq -3$
Cho $-1\leq a,b,c\leq 2;a+b+c\geq 0$. Chứng minh: $ab+bc+ca\geq -3$

Cho $-1\leq a,b,c\leq 2;a+b+c\geq 0$. Chứng minh: $ab+bc+ca\geq -3$
4
phiếu
1đáp án
1K lượt xem

Cho $\left\{ \begin{array}{l} a,b,c>0\\ ab+bc+ca=1 \end{array} \right..$ Chứng minh:
            $\Sigma \frac{\sqrt{a^2+1}-a}{bc}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
Cho $\left\{ \begin{array}{l} a,b,c>0\\ ab+bc+ca=1 \end{array} \right..$ Chứng minh: $\Sigma \frac{\sqrt{a^2+1}-a}{bc}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Cho $\left\{ \begin{array}{l} a,b,c>0\\ ab+bc+ca=1 \end{array} \right..$ Chứng minh: $\Sigma \frac{\sqrt{a^2+1}-a}{bc}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
3
phiếu
1đáp án
1K lượt xem

Cho $\left\{ \begin{array}{l} a,b,c>0\ a+b+c=abc \end{array} \right..$ Tìm max:
               $S=\Sigma \frac{a}{\sqrt{bc(1+a^2)}}$
Cho $\left\{ \begin{array}{l} a,b,c>0\ a+b+c=abc \end{array} \right..$ Tìm max: $S=\Sigma \frac{a}{\sqrt{bc(1+a^2)}}$

Cho $\left\{ \begin{array}{l} a,b,c>0\ a+b+c=abc \end{array} \right..$ Tìm max: $S=\Sigma \frac{a}{\sqrt{bc(1+a^2)}}$
1
phiếu
2đáp án
2K lượt xem

Cho $1\leq a,b,c\leq 2$. Chứng minh:
            $\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\leq 7$
Cho $1\leq a,b,c\leq 2$. Chứng minh: $\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\leq 7$

Cho $1\leq a,b,c\leq 2$. Chứng minh: $\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\leq 7$
7
phiếu
4đáp án
3K lượt xem

Cho $x,y,z$ là các số thực, chứng minh:
$x^4+y^4+z^4+3(x^2y^2+y^2z^2+z^2x^2) \ge 2(x^3y+y^3x+x^3z+z^3x+y^3z+z^3y)$
Mới chế :D

Cho $x,y,z$ là các số thực, chứng minh:$x^4+y^4+z^4+3(x^2y^2+y^2z^2+z^2x^2) \ge 2(x^3y+y^3x+x^3z+z^3x+y^3z+z^3y)$
4
phiếu
3đáp án
3K lượt xem

cho $a,b,c >0.$
CMR: $\frac{5b^{3}-a^{3}}{ab+3b^{2}} +  \frac{5a^{3}-c^{3}}{ac+3a^{2}} +  \frac{5c^{3}-b^{3}}{bc+3c^{2}} \leq (a+b+c)$
CM Bất Đẳng Thức

cho $a,b,c >0.$CMR: $\frac{5b^{3}-a^{3}}{ab+3b^{2}} + \frac{5a^{3}-c^{3}}{ac+3a^{2}} + \frac{5c^{3}-b^{3}}{bc+3c^{2}} \leq (a+b+c)$
8
phiếu
1đáp án
1K lượt xem

Chứng minh bất đẳng thức  $\forall  x,y \in  R$
 $3(x^{2}-x+1)(y^{2}-y+1) \geq  2(x^{2}y^{2}-xy+1)$
Bất đẳng thức

Chứng minh bất đẳng thức $\forall x,y \in R$ $3(x^{2}-x+1)(y^{2}-y+1) \geq 2(x^{2}y^{2}-xy+1)$
10
phiếu
2đáp án
2K lượt xem

cho $x$ là số thực bất kì timg Min của
$P=\frac{\sqrt{3(2x^2+2x+1)}}{3}+\frac{1}{\sqrt{2x^2+(3+\sqrt{3})x+3}}+\frac{1}{\sqrt{2x^2+(3-\sqrt{3})x+3}}$
MIN

cho $x$ là số thực bất kì timg Min của$P=\frac{\sqrt{3(2x^2+2x+1)}}{3}+\frac{1}{\sqrt{2x^2+(3+\sqrt{3})x+3}}+\frac{1}{\sqrt{2x^2+(3-\sqrt{3})x+3}}$
11
phiếu
1đáp án
2K lượt xem

Cho $a,b,c>0$ thỏa mãn $a+b+c\leq 1$ .CMR:
$\frac{a\sqrt{a}}{a+\sqrt{ab}+b}+\frac{b\sqrt{b}}{b+\sqrt{bc}+c}+\frac{c\sqrt{c}}{c+\sqrt{ca}+a}+\frac{1}{27\sqrt{abc}}\geq \frac{4\sqrt{3}}{9}$
CMR: $\frac{a\sqrt{a}}{a+\sqrt{ab}+b}+\frac{b\sqrt{b}}{b+\sqrt{bc}+c}+\frac{c\sqrt{c}}{c+\sqrt{ca}+a}+\frac{1}{27\sqrt{abc}}\geq \frac{4\sqrt{3}}{9}$

Cho $a,b,c>0$ thỏa mãn $a+b+c\leq 1$ .CMR:$\frac{a\sqrt{a}}{a+\sqrt{ab}+b}+\frac{b\sqrt{b}}{b+\sqrt{bc}+c}+\frac{c\sqrt{c}}{c+\sqrt{ca}+a}+\frac{1}{27\sqrt{abc}}\geq \frac{4\sqrt{3}}{9}$
6
phiếu
0đáp án
482 lượt xem

Cho $a,b\geq0. C/m:\sqrt{\frac{a+2b}{a^{2}+2b^{2}}}+\sqrt{\frac{b+2a}{b^{2}+2a^{2}}}\leq \sqrt{\frac{3}{a+b}}$
Part 3 =))

Cho $a,b\geq0. C/m:\sqrt{\frac{a+2b}{a^{2}+2b^{2}}}+\sqrt{\frac{b+2a}{b^{2}+2a^{2}}}\leq \sqrt{\frac{3}{a+b}}$
8
phiếu
2đáp án
2K lượt xem

Cho $x,y,z>0$.Tìm hằng số k nhỏ nhất sao cho:
$x+\sqrt{xy}+\sqrt[3]{xyz}\leq k(x+y+z)$
Bài cũ- Cho $x,y,z>0$.Tìm hằng số k nhỏ nhất sao cho: $x+\sqrt{xy}+\sqrt[3]{xyz}\leq k(x+y+z)$

Cho $x,y,z>0$.Tìm hằng số k nhỏ nhất sao cho:$x+\sqrt{xy}+\sqrt[3]{xyz}\leq k(x+y+z)$
8
phiếu
1đáp án
1K lượt xem

Mn thử làm xem bài hay
Cho x,y $\in Z và x,y\neq 0; xy(x+y)=x^{2}-xy+y^{2}$. Tìm max của I=$\frac{1}{x^{3}}+\frac{1}{y^{3}}$
Tìm max của I=$\frac{1}{x^{3}}+\frac{1}{y^{3}}$

Mn thử làm xem bài hayCho x,y $\in Z và x,y\neq 0; xy(x+y)=x^{2}-xy+y^{2}$. Tìm max của I=$\frac{1}{x^{3}}+\frac{1}{y^{3}}$
12
phiếu
2đáp án
2K lượt xem

cho 3 số không âm $:a,b,c.CMR:\frac{3(a^4+b^4+c^4)}{(a^2+b^2+c^2)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq2$
cho 3 số không âm $:a,b,c.CMR:\frac{3(a^4+b^4+c^4)}{(a^2+b^2+c^2)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq2$

cho 3 số không âm $:a,b,c.CMR:\frac{3(a^4+b^4+c^4)}{(a^2+b^2+c^2)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq2$
9
phiếu
5đáp án
3K lượt xem

BÀI1: Cho $x,y>0$ và $ x+y \ge4$. TÌM GTNN của $P=\frac{3x^2+4}{4x}   +  \frac{2+y^3}{y^2}$
BÀI2: Cho $x\ge2$, $y\ge3$,$z\ge4$  Tìm gtln của $P= \frac{xy\sqrt{z-4}   +  yz\sqrt{x-2}   +  xz\sqrt{y-3}}{xyz}$
BÀI 3: CHO $x,y,z>0$ và $x+y+z=1$ tìm gtln của $P= \sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}$
BÀI 4: cho $x,y,z>0$ và $x+y+z=\frac 34$ tìm gtln của $P= \sqrt[3]{x+3y}+ \sqrt[3]{y+3z}+ \sqrt[3]{z+3x}$
MN GIÚP VS NHA!

BÀI1: Cho $x,y>0$ và $ x+y \ge4$. TÌM GTNN của $P=\frac{3x^2+4}{4x} + \frac{2+y^3}{y^2}$BÀI2: Cho $x\ge2$, $y\ge3$,$z\ge4$ Tìm gtln của $P= \frac{xy\sqrt{z-4} + yz\sqrt{x-2} + xz\sqrt{y-3}}{xyz}$BÀI 3: CHO $x,y,z>0$ và $x+y+z=1$ tìm...
8
phiếu
1đáp án
1K lượt xem

cho$ \begin{cases}x,y,z>0 \\ xyz=1 \end{cases}$.$CMR:\frac{1}{x^4(y+1)(z+1)}+\frac{1}{y^4(x+1)(z+1)}+\frac{1}{z^4(y+1)(x+1)}\geq \frac{3}{4}$
cho$ \begin{cases}x,y,z>0 \\ xyz=1 \end{cases}$.$CMR:\frac{1}{x^4(y+1)(z+1)}+\frac{1}{y^4(x+1)(z+1)}+\frac{1}{z^4(y+1)(x+1)}\geq \frac{3}{4}$

cho$ \begin{cases}x,y,z>0 \\ xyz=1 \end{cases}$.$CMR:\frac{1}{x^4(y+1)(z+1)}+\frac{1}{y^4(x+1)(z+1)}+\frac{1}{z^4(y+1)(x+1)}\geq \frac{3}{4}$
5
phiếu
1đáp án
1K lượt xem

Cho $a,b, c$ là các số thực dương. chứng minh:
$\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\geq 1.$
làm giúp mình với

Cho $a,b, c$ là các số thực dương. chứng minh:$\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\geq 1.$
4
phiếu
1đáp án
1K lượt xem

Cho $a,b,c$ lá độ dài 3 cạnh của tam giac. CMR:
$\frac{a}{\sqrt[3]{b^3+c^3}}+\frac{b}{\sqrt[3]{a^3+c^3}}+\frac{c}{\sqrt[3]{b^3+a^3}}<2\sqrt[3]{4}$
lam thử nha

Cho $a,b,c$ lá độ dài 3 cạnh của tam giac. CMR:$\frac{a}{\sqrt[3]{b^3+c^3}}+\frac{b}{\sqrt[3]{a^3+c^3}}+\frac{c}{\sqrt[3]{b^3+a^3}}<2\sqrt[3]{4}$
4
phiếu
1đáp án
1K lượt xem

$a,b,c \geq 0$ thỏa $a+b+c=1$
Chứng minh: $$ \frac{1}{(a+1)^2}+ \frac{1}{(b+1)^2}+ \frac{1}{(c+1)^2} \geq \frac{9}{4(ab+bc+ca+1)}$$
Mở rộng từ Iran 96

$a,b,c \geq 0$ thỏa $a+b+c=1$Chứng minh: $$ \frac{1}{(a+1)^2}+ \frac{1}{(b+1)^2}+ \frac{1}{(c+1)^2} \geq \frac{9}{4(ab+bc+ca+1)}$$
11
phiếu
1đáp án
2K lượt xem

cho $a, b, c$ là các số với $\left| {a} \right|,\left| {b} \right|,\left| {c} \right|\leq 1$
chứng minh rằng, nếu $a, b,c$ thỏa mãn:
                    $a^{2}+b^{2}+c^{2}=1-2abc$ 
thì
$a+b+c=2\sqrt{\frac{(1-a)(1-b)(1-c)}{2}}+1$
cái này mới nè.....!?

cho $a, b, c$ là các số với $\left| {a} \right|,\left| {b} \right|,\left| {c} \right|\leq 1$chứng minh rằng, nếu $a, b,c$ thỏa mãn: $a^{2}+b^{2}+c^{2}=1-2abc$ thì$a+b+c=2\sqrt{\frac{(1-a)(1-b)(1-c)}{2}}+1$
3
phiếu
1đáp án
1K lượt xem

Chứng minh với mọi số $a,b,c$ không âm :
   $\frac{1}{\sqrt{a^{2}+bc}}+\frac{1}{\sqrt{b^{2}+ac}}+\frac{1}{\sqrt{c^{2}+ab}} \geq  \frac{6}{a+b+c}$
Bất đẳng thức hay

Chứng minh với mọi số $a,b,c$ không âm : $\frac{1}{\sqrt{a^{2}+bc}}+\frac{1}{\sqrt{b^{2}+ac}}+\frac{1}{\sqrt{c^{2}+ab}} \geq \frac{6}{a+b+c}$
28
phiếu
1đáp án
4K lượt xem

Cho các số thực dương a, b, c. Chứng minh rằng:
               $\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\leq \frac{5}{4}\sqrt{a+b+c}$

Mathematics brings to light our intrinsic ideas

Cho các số thực dương a, b, c. Chứng minh rằng: $\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\leq \frac{5}{4}\sqrt{a+b+c}$
8
phiếu
5đáp án
4K lượt xem

cho a,b.c là các số thực dương.cmr:
$\frac {a^{2}}{2a^{2}+bc}$+  $\frac {b^{2}}{2b^{2}+ca}$+$\frac {c^{2}}{2c^{2}+ab}\leq 1$
giúp tớ với....

cho a,b.c là các số thực dương.cmr:$\frac {a^{2}}{2a^{2}+bc}$+ $\frac {b^{2}}{2b^{2}+ca}$+$\frac {c^{2}}{2c^{2}+ab}\leq 1$
14
phiếu
0đáp án
1K lượt xem

Cho các số thực $a,b,c$ thỏa mãn $(a^{2}+4b^{2})(b^{2}+4c^{2})(c^{2}+4a^{2})=8$
Tìm max:$P=(a-2b)(b-2c)(c-2a)+14abc$

GTLN......

Cho các số thực $a,b,c$ thỏa mãn $(a^{2}+4b^{2})(b^{2}+4c^{2})(c^{2}+4a^{2})=8$Tìm max:$P=(a-2b)(b-2c)(c-2a)+14abc$
12
phiếu
0đáp án
822 lượt xem

cho 2 số $x,y$ thỏa mãn $x^{2}+y^{2}=1$. tìm $Max$
P=$\sqrt{(5+4y-4x^{2})(1-y)}   (\sqrt{2-2y}+\sqrt{2-x\sqrt{3}+y}+\sqrt{2+x\sqrt{3}+y})$
BĐT nha moi người!!!

cho 2 số $x,y$ thỏa mãn $x^{2}+y^{2}=1$. tìm $Max$P=$\sqrt{(5+4y-4x^{2})(1-y)} (\sqrt{2-2y}+\sqrt{2-x\sqrt{3}+y}+\sqrt{2+x\sqrt{3}+y})$
16
phiếu
1đáp án
1K lượt xem

CMR:
$a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2}$
(Làm+Vote) nhiều!!!!!!!!!!!!!!!

CMR:$a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2}$
14
phiếu
1đáp án
2K lượt xem

Chứng minh rằng : $\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} (1)\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}(2)$ với mọi $a, b, c > 0$.
ai làm giúp bài này vs

Chứng minh rằng : $\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} (1)\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}(2)$ với mọi $a, b, c > 0$.
3
phiếu
1đáp án
1K lượt xem

cm: $\frac{x^{3}}{x^{2}+xy+y^{2}} \geq  \frac{2x-y}{3}$voi moi so thuc duong x,y
Bat dang thuc

cm: $\frac{x^{3}}{x^{2}+xy+y^{2}} \geq \frac{2x-y}{3}$voi moi so thuc duong x,y
11
phiếu
2đáp án
2K lượt xem

chứng minh rằng:
$\frac{a^{n}+b^{n}}{2}\geq \frac{(a+b)^{n}}{2^{n}}$       (với mọi $n\in N^{*}$)
(có ai quan tâm đến phương pháp chứng minh BĐT này thì vote cho m ha)
bài cơ bản nhất của qui nạp toán học nè..!?

chứng minh rằng:$\frac{a^{n}+b^{n}}{2}\geq \frac{(a+b)^{n}}{2^{n}}$ (với mọi $n\in N^{*}$)(có ai quan tâm đến phương pháp chứng minh BĐT này thì vote cho m ha)
13
phiếu
4đáp án
3K lượt xem

Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :
$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
Ai giỏi BĐT nào ...^-^

Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
15
phiếu
9đáp án
8K lượt xem

cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$
+100000
cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$

cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$
15
phiếu
2đáp án
2K lượt xem

CM: Với $0\leq$$a$$\leq$$b$$\leq$$c$ thì $\frac{a^{2005}+b^{2005}+c^{2005}}{a^{2006}+b^{2006}+c^{2006}}$$\leq $$\frac{3}{a+b+c}$
BĐT bậc ...."khủng"!!!

CM: Với $0\leq$$a$$\leq$$b$$\leq$$c$ thì $\frac{a^{2005}+b^{2005}+c^{2005}}{a^{2006}+b^{2006}+c^{2006}}$$\leq $$\frac{3}{a+b+c}$
14
phiếu
1đáp án
2K lượt xem

Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ 
cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$
chứng minh rằng $x+y+z\leq 2+xyz$
BĐT Ngắn Gọn

Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$chứng minh rằng $x+y+z\leq 2+xyz$
19
phiếu
1đáp án
2K lượt xem

với $a,b,c $  dương, tìm min của:
$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$

có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
đến hẹn lại lên....!?

với $a,b,c $ dương, tìm min của:$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
16
phiếu
1đáp án
1K lượt xem

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$
tìm min của:
$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$
ủng hộ mình nha...!?
đã từng thi rồi nè....kĩ thuật sử dụng bất đẳng thức...chọn điểm rơi...!?

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$tìm min của:$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$ủng hộ mình nha...!?
15
phiếu
0đáp án
1K lượt xem

cho $x,y,z,a,b,c$$\in R^{+}$.tìm min của:
$A=\frac{\sqrt{by}}{\sqrt{by+8cz}}+\frac{\sqrt{cz}}{\sqrt{cz+8ax}}+\frac{\sqrt{ax}}{\sqrt{ax+8by}}$
(thấy hay thì vote giùm mình nha mọi người)
mà nhớ làm theo nhiều cách nghe...
từ một bất đẳng thức đơn giản khác....!?

cho $x,y,z,a,b,c$$\in R^{+}$.tìm min của:$A=\frac{\sqrt{by}}{\sqrt{by+8cz}}+\frac{\sqrt{cz}}{\sqrt{cz+8ax}}+\frac{\sqrt{ax}}{\sqrt{ax+8by}}$(thấy hay thì vote giùm mình nha mọi người)mà nhớ làm theo nhiều cách nghe...
10
phiếu
1đáp án
1K lượt xem

$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$

(càng nhiều cách càng tốt nha)
BĐT

$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$(càng nhiều cách càng tốt nha)
16
phiếu
0đáp án
1K lượt xem

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :
$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$
đừng sợ =)))

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$