cho ba số thực không âm x,y,z.Tìm giá trị lớn nhất của biểu thức:$P=\frac{4}{\sqrt{x^{2}+y^{2}+z^{2}+4}} -\frac{4}{\left ( x +y\right )\sqrt{\left ( x+2z \right )\left ( y+2z \right )}} -\frac{5}{\left ( y+z \right )\sqrt{\left ( y+2x \right )\left ( z+2x \right )}}$ Xem thêm: Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
tìm giá trị lớn nhất của biểu thức
cho ba số thực không âm x,y,z.Tìm giá trị lớn nhất của biểu thức:$P=\frac{4}{\sqrt{x^{2}+y^{2}+z^{2}+4}} -\frac{4}{\left ( x +y\right )\sqrt{\left ( x+2z \right )\left ( y+2z \right )}} -\frac{5}{\left ( y+z \right )\sqrt{\left ( y+2x \right )\left (...
|
|
Cho $a+b=1.$ Tìm giá trị nhỏ nhất của biểu thức $Q = a^{3}+b^{3}+ab.$
Tìm GTNN của biểu thức
Cho $a+b=1.$ Tìm giá trị nhỏ nhất của biểu thức $Q = a^{3}+b^{3}+ab.$
|
|
Cho $\color{red}{x,y,z}$ là các số thực dương tùy ý. Tìm giá trị nhỏ nhất của biểu thức: $$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$$
$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$
Cho $\color{red}{x,y,z}$ là các số thực dương tùy ý. Tìm giá trị nhỏ nhất của biểu thức:$$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$$
|
|
cho $xy=4,x>0,y>0$.tìm GTNN của $A=(x+1)(4y+3)$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
tìm GTNN
cho $xy=4,x>0,y>0$.tìm GTNN của $A=(x+1)(4y+3)$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
|
|
Cho 3 số thực dương $a,b,c$ thỏa mãn $\color{red}{\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}.}$ Tìm giá trị nhỏ nhất của biểu thức: $$\color{green}{\mathbb F = \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}}$$
$\color{black}{\mathbb F = \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}}$
Cho 3 số thực dương $a,b,c$ thỏa mãn $\color{red}{\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}.}$ Tìm giá trị nhỏ nhất của biểu thức:$$\color{green}{\mathbb F = \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}}$$
|
|
Bài 87:Cho x,y là các số không âm thỏa mãn: $x^2+y^2+z^2=5$. Tìm giá trị nhỏ nhất của biểu thức: $P=(x+z)\sqrt{\frac{z}{x^2+y^2}}+\frac{3x^2+4y^2+8z^2+8}{16z}+\frac{z}{2}-\frac{y}{4}-\frac{1}{8}$
Ôn thi đại học 2
Bài 87:Cho x,y là các số không âm thỏa mãn: $x^2+y^2+z^2=5$.Tìm giá trị nhỏ nhất của biểu thức:$P=(x+z)\sqrt{\frac{z}{x^2+y^2}}+\frac{3x^2+4y^2+8z^2+8}{16z}+\frac{z}{2}-\frac{y}{4}-\frac{1}{8}$
|
|
cho $x,y>0; x+y\geq 6$. tìm min: $P=3x+2y+\frac{6}{x}+\frac{8}{y}$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
toán 9
cho $x,y>0; x+y\geq 6$. tìm min: $P=3x+2y+\frac{6}{x}+\frac{8}{y}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
|
|
Cho $x,y,z$ là các số thực không âm thỏa mãn $\sqrt{x^2+5}+\sqrt{y+1}+\sqrt{z+1}=5.$ Tìm giá trị lớn nhất của biểu thức: $$\color{green}{\mathbb F=(4x^2+y+z)^3+\frac{y+z}{x^2+y+z}-\frac{4}{x}}$$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
$\color{black}{\mathbb F=(4x^2+y+z)^3+\frac{y+z}{x^2+y+z}-\frac{4}{x}}$
Cho $x,y,z$ là các số thực không âm thỏa mãn $\sqrt{x^2+5}+\sqrt{y+1}+\sqrt{z+1}=5.$ Tìm giá trị lớn nhất của biểu thức:$$\color{green}{\mathbb F=(4x^2+y+z)^3+\frac{y+z}{x^2+y+z}-\frac{4}{x}}$$Xem thêm : Mời mọi người tham gia cuộc thi...
|
|
Với các số thực dương a,b thỏa mãn: $a^2+b^2=ab+1$. Tìm GTLN của biểu thức: $P=\sqrt{7-3ab}+\frac{a-2}{a^2+1}+\frac{b-2}{b^2+1}$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
Ôn thi đại học
Với các số thực dương a,b thỏa mãn: $a^2+b^2=ab+1$. Tìm GTLN của biểu thức:$P=\sqrt{7-3ab}+\frac{a-2}{a^2+1}+\frac{b-2}{b^2+1}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
|
|
Cho $a,b,c$ không âm thỏa mãn : $a^{2}+b^{2}+c^{2}=3$ . Tìm GTNN : $P=\frac{1}{(a-b)^{2} } +\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}}$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
Min
Cho $a,b,c$ không âm thỏa mãn : $a^{2}+b^{2}+c^{2}=3$ . Tìm GTNN : $P=\frac{1}{(a-b)^{2} } +\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề...
|
|
Cho $x,y,z$ là các số thực thuộc đoạn $[1;3]$ và thỏa mãn $x^2+y^2+z^2=14.$ Tìm giá trị nhỏ nhất của biểu thức: $$\color{blue}{\mathbb F=(1-\frac{y}{x})(2+\frac{z}{x})+\frac{4(y^2+xz+7)}{y(x+y+z)^2}+\frac{21+3xz-8(x+y+z)}{9}}$$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
$\color{black}{\mathbb F=(1-\frac{y}{x})(2+\frac{z}{x})+\frac{4(y^2+xz+7)}{y(x+y+z)^2}+\frac{21+3xz-8(x+y+z)}{9}}$
Cho $x,y,z$ là các số thực thuộc đoạn $[1;3]$ và thỏa mãn $x^2+y^2+z^2=14.$ Tìm giá trị nhỏ nhất của biểu thức:$$\color{blue}{\mathbb F=(1-\frac{y}{x})(2+\frac{z}{x})+\frac{4(y^2+xz+7)}{y(x+y+z)^2}+\frac{21+3xz-8(x+y+z)}{9}}$$Xem thêm...
|
|
$A=\frac{x}{x+y}+\frac{y}{8-(x+y)}$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
Tìm GTLN của biểu thức
$A=\frac{x}{x+y}+\frac{y}{8-(x+y)}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
|
|
Cho$ x,y,z\geq 0 và x+y+z=4. Tìm max: P=xy^{3}+yz^{3}+zx^{3}$
Gấp mn
Cho$ x,y,z\geq 0 và x+y+z=4. Tìm max: P=xy^{3}+yz^{3}+zx^{3}$
|
|
$P=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}$ tim GTLN cua p
GIA TRI LON NHAT
$P=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}$ tim GTLN cua p
|
|
Cho 3 số thực x,y,z thỏa:
\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}
Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
Hỏi bất phương trình!
Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
|
|
Tìm GTNN của bt sau :$x^{2} + 2y^{2} + 2xy - 2x + 2008$
|
|
đề thi học kì thpt đoàn thượng vừa sáng nay... cho $x\in [0;1]$ hãy tìm GTLN của $A$...... $A=13\sqrt{x^{2}-x^{4}}+9\sqrt{x^{2}+x^{4}}$
comment thời gian các bn làm bài này..!!
đề thi học kì thpt đoàn thượng vừa sáng nay...cho $x\in [0;1]$ hãy tìm GTLN của $A$......$A=13\sqrt{x^{2}-x^{4}}+9\sqrt{x^{2}+x^{4}}$
|
|
Cho $a,b,c>0$ thỏa mãn $\frac{4a}{b}(1+\frac{2c}{b})+\frac{b}{a}(1+\frac{c}{a})=6$Tìm GTNN của biểu thức:$P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab}{c(2a+b)}$
|
|
Cho các số thực không âm a, b, c thỏa mãn a + b+c = 3. Tìm giá trị nhỏ nhất của biểu thức A = $a^{2} + b^{2} + c^{2}$ - 2ab - 6bc - 4ca
Bài toán thách đấu
Cho các số thực không âm a, b, c thỏa mãn a + b+c = 3. Tìm giá trị nhỏ nhất của biểu thức A = $a^{2} + b^{2} + c^{2}$ - 2ab - 6bc - 4ca
|
|
Cho x,y,z là các số thực dương thỏa mãn $x\geq y\geq z$ và $32-3x^{2}=z^{2}=16-4y^{2}$. Tìm GTLN của biểu thức $P=xy+yz+zx$
Tìm max...
Cho x,y,z là các số thực dương thỏa mãn $x\geq y\geq z$ và $32-3x^{2}=z^{2}=16-4y^{2}$.Tìm GTLN của biểu thức $P=xy+yz+zx$
|
|
Cho a,b,c là các số thực dương khác nhau đôi 1.Tìm max của: $P=\frac{(a-x)(a-y)}{a.(a-b)(a-c)}+\frac{(b-x)(b-y)}{b(b-c)(b-a)}+\frac{(c-x)(c-y)}{c(c-a)(c-b)}$,trong đó x,y là 2 số dương thay đổi luôn có tổng bằng 1.
Jin ca ra mà nhân tung đại pháp nè,e chịu rùi....@@@
Cho a,b,c là các số thực dương khác nhau đôi 1.Tìm max của:$P=\frac{(a-x)(a-y)}{a.(a-b)(a-c)}+\frac{(b-x)(b-y)}{b(b-c)(b-a)}+\frac{(c-x)(c-y)}{c(c-a)(c-b)}$,trong đó x,y là 2 số dương thay đổi luôn có tổng bằng 1.
|
|
Cho a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn $a+b+c=1$. Tìm GTNN:$P=\frac{81abc+2}{9}+b+c+3(2a^3+b^3+c^3)$
|
|
Cho $x,y>0.$ Tìm min: $P=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+(x+y)^3}}$
Làm vài bài dễ cx đc
Cho $x,y>0.$ Tìm min: $P=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+(x+y)^3}}$
|
|
Cho $a,b,c>0$ thỏa: $ab+bc+ca=1.$ Min: $P=\Sigma \frac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}$
|
|
Cho $x^2+xy+y^2=1.$ Tìm min and max: $B=x^2-xy+2y^2$
|
|
Cho $\left\{ \begin{array}{l} a,b,c>0\ a+b+c=abc \end{array} \right..$ Tìm max: $S=\Sigma \frac{a}{\sqrt{bc(1+a^2)}}$
|
|
Cho $a,b,c>0$ t/m $a^2+b^2=1.$ Tìm min: $S=(2+a)(1+\frac{1}{b})+(2+b)(1+\frac{1}{a})$
|
|
Cho $a,b,c>0$ t/m $abc=1$. Tìm GTLN: $S=\frac{1}{(a+1)^2+b^2+1}+\frac{1}{(b+1)^2+c^2+1}+\frac{1}{(c+1)^2+a^2+1}$
|
|
Cho $a,b,c>0$. Tìm giá trị nhỏ nhất của biểu thức: $S=\Sigma \frac{c(ab+1)^2}{b^2(bc+1)}$
|
|
Cho $\left\{ \begin{array}{l} x,y,z\geq 0\\ xy+yz+zx=5 \end{array} \right.$ Tìm min: $A=\frac{3x+3y+2z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{z^2+5}}$
Chị up bừa nhé Jin, chắc mấy bài này e lm nh r! GTNN
Cho $\left\{ \begin{array}{l} x,y,z\geq 0\\ xy+yz+zx=5 \end{array} \right.$Tìm min: $A=\frac{3x+3y+2z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{z^2+5}}$
|
|
Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt: $M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
Cực trị
Giả sử $x,y,z$ là các số thực thỏa mãn đk $0$$\leq$$x,y,x\leq2$và $x+y+z=3$.Tìm min và max của bt:$M=x^{4}+y^{4}+z^{4}+12.(1-x)(1-y)(1-z)$
|
|
Cho $a, b, c$ là các số thực dương tìm Min $P=\frac{3a^4+3b^4+25c^3+2}{(a+b+c)^3}$
GTNN
Cho $a, b, c$ là các số thực dương tìm Min$P=\frac{3a^4+3b^4+25c^3+2}{(a+b+c)^3}$
|
|
Cho 3 số $x,y,z>0$. Tìm GTNN:$P=\frac{2}{x+\sqrt{xy}+\sqrt[3]{xyz}}-\frac{3}{\sqrt{x+y+z}}$
|
|
Tìm GTLN $T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$
|
|
cho $\begin{cases}a, b, c \geq 0 \\ c \leq a\leq b \end{cases}$ tìm GTNN $S = \frac{1}{a^{2}+ c^{2}} + \frac{1}{b^{2} + c^{2}} + \sqrt{a+b+c}$
ứng dụng đạo hàm tìm GTNN
cho $\begin{cases}a, b, c \geq 0 \\ c \leq a\leq b \end{cases}$tìm GTNN $S = \frac{1}{a^{2}+ c^{2}} + \frac{1}{b^{2} + c^{2}} + \sqrt{a+b+c}$
|
|
cho $a, b, c\in R^{+}$ và thỏa mãn $a^{2}+b^{2}+c^{2}=3$Tìm max của: $A=\frac{ab}{3+c^{2}}+\frac{bc}{3+a^{2}}-\frac{(ab)^{3}+(bc)^{3}}{24(ac)^{3}}$ ( đề thi thử đại học lần 2 trường THPT Đoàn Thượng - thầy Nguyễn Trường Sơn )
ứng dụng đạo hàm trong tìm min, max
cho $a, b, c\in R^{+}$ và thỏa mãn $a^{2}+b^{2}+c^{2}=3$Tìm max của:$A=\frac{ab}{3+c^{2}}+\frac{bc}{3+a^{2}}-\frac{(ab)^{3}+(bc)^{3}}{24(ac)^{3}}$( đề thi thử đại học lần 2 trường THPT Đoàn Thượng - thầy Nguyễn Trường Sơn )
|
|
BÀI 1: cho $x^2+y^2+z^2=1$ và $x,y,z >0$..tìm giá trị nhỏ nhất của $p=\frac x{(y^2+z^2)}+\frac y{(x^2+z^2)}+\frac z{(x^2+y^2)}$ BÀI 2:cho $x,y,z>0$ và $x+y+z=1$.tìm GTNN của $p= \frac{(x+y)}{\sqrt{(xy+z)}} + \frac{( y+z)}{\sqrt{yz+x}} + \frac{(x+z)}{\sqrt{(zx+y)}}$ BÀI 3: cho $x,y,z>0$ và $xyz=1$. tìm GTNN của $p=\frac{\sqrt{ 1+x^2+y^2}}{xy} + \frac{\sqrt{1+y^2+z^2}}{yz} + \frac{\sqrt{1+x^2+z^2}}{xz}$
MN GIÚP MK VS NHA !!!!!!!!!!!!!!
BÀI 1: cho $x^2+y^2+z^2=1$ và $x,y,z >0$..tìm giá trị nhỏ nhất của $p=\frac x{(y^2+z^2)}+\frac y{(x^2+z^2)}+\frac z{(x^2+y^2)}$BÀI 2:cho $x,y,z>0$ và $x+y+z=1$.tìm GTNN của $p= \frac{(x+y)}{\sqrt{(xy+z)}} + \frac{( y+z)}{\sqrt{yz+x}} + ...
|
|
Cho các số thực dương $a,b,c$ thỏa mãn $a^{3}+b^{4} + c^{5}\geq a^{4}+b^{5}+c^{6}$ Tìm GTLN:$P=\frac{ab(a^{2}+b^{2})}{3+c^{4}} + \frac{bc(b^{2}+c^{2})}{3+a^{4}} - \frac{1}{8}. \frac{b^{4}(c^{4}+a^{4})}{a^{4}c^{4}}$
BĐT max hay....
Cho các số thực dương $a,b,c$ thỏa mãn $a^{3}+b^{4} + c^{5}\geq a^{4}+b^{5}+c^{6}$Tìm GTLN:$P=\frac{ab(a^{2}+b^{2})}{3+c^{4}} + \frac{bc(b^{2}+c^{2})}{3+a^{4}} - \frac{1}{8}. \frac{b^{4}(c^{4}+a^{4})}{a^{4}c^{4}}$
|
|
Cho $a, b$ là các số thực dương thỏa mãn $a+b \geq 4$ Tìm GTNN của $P=\frac{2a^{2}+9}{a} + \frac{3b^{2}+2}{b}$
the anh
Cho $a, b$ là các số thực dương thỏa mãn $a+b \geq 4$ Tìm GTNN của $P=\frac{2a^{2}+9}{a} + \frac{3b^{2}+2}{b}$
|
|
cho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$tìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$
|
|
Số thực $x$ thay đổi thỏa mãn đk $x^{2}+(3 - x)^{2}\geq5$.Tìm GTNN của biểu thức $P=x^{4}+(3 - x)^{4}+6x^{2}(3 -x)^{2}$
Tìm cực trị
Số thực $x$ thay đổi thỏa mãn đk $x^{2}+(3 - x)^{2}\geq5$.Tìm GTNN của biểu thức $P=x^{4}+(3 - x)^{4}+6x^{2}(3 -x)^{2}$
|
|
Lâu lắm mới đăng bài đây, vừa làm hồi chiều, thấy hay hay đăng lên Cho $a;b;c$ không âm có tổng bằng 4 Tìm max $P=a^3+b^3+c^3+8(a^2b+b^2c+c^2a)$
Come back :)
Lâu lắm mới đăng bài đây, vừa làm hồi chiều, thấy hay hay đăng lênCho $a;b;c$ không âm có tổng bằng 4Tìm max $P=a^3+b^3+c^3+8(a^2b+b^2c+c^2a)$
|
|
Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$ Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
Max dễ...
Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
|
|
cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)Tìm min của: $A=\frac{1}{1+a^{n}}+\frac{1}{1+(ab)^{n}}+\frac{1}{1+(abc)^{n}}+\frac{1}{1+(abcd)^{n}}+\frac{1}{1+(abcde)^{n}}$
(thấy hay thì vote up giùm nha mọi người....!?)
khá hay...cũng khá cơ bản....!?
cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)Tìm min của: $A=\frac{1}{1+a^{n}}+\frac{1}{1+(ab)^{n}}+\frac{1}{1+(abc)^{n}}+\frac{1}{1+(abcd)^{n}}+\frac{1}{1+(abcde)^{n}}$(thấy hay thì vote up giùm...
|
|
Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$ Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
Help!!!!
Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
|
|
cho 2 so thuc x,y thoa man $x^2+y^2-6x-2y+5=0$. tim GTLN cua bieu thuc : $P=\frac{3y^2+4xy+7x+4y-1}{x+2y+1}$
A
cho 2 so thuc x,y thoa man $x^2+y^2-6x-2y+5=0$. tim GTLN cua bieu thuc :$P=\frac{3y^2+4xy+7x+4y-1}{x+2y+1}$
|
|
cho $x,y,z$ là các số thực dương thỏa mãn $x^{2}+y^{2}+z^{2}=8$ Tìm $Min, Max$ H=$|x^{3}-y^{3}|+|y^{3}-z^{3}|+|z^{3}-x^{3}|$
BĐT [đang ẩn]
cho $x,y,z$ là các số thực dương thỏa mãn $x^{2}+y^{2}+z^{2}=8$ Tìm $Min, Max$ H=$|x^{3}-y^{3}|+|y^{3}-z^{3}|+|z^{3}-x^{3}|$
|
|
Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN: $P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
BĐT!!!
Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN:$P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
|
|
Cho $x,y>0$ và $x+y+1=3xy.$ Tìm GTLN:$P=\frac{3x}{y(x+1)}+\frac{3y}{x(y+1)}-\frac{1}{x^2}-\frac{1}{y^2}$
|
|
Câu 1: $a^{4}-2b^{3}+3a^{2}-2b=b^{4}+2a^{3}+3b^{2}+2a$ Cm: $a=b+1$ Câu 2: Cho $a,b\in[0;1]$. Tìm giá trị lớn nhất của biểu thức: $\frac{a}{\sqrt{2b^{2}+5}}+\frac{b}{\sqrt{2a^{2}+5}}$
Trích đề thi thử khtn (vừa thi hôm qua)
Câu 1: $a^{4}-2b^{3}+3a^{2}-2b=b^{4}+2a^{3}+3b^{2}+2a$Cm: $a=b+1$Câu 2:Cho $a,b\in[0;1]$. Tìm giá trị lớn nhất của biểu thức:$\frac{a}{\sqrt{2b^{2}+5}}+\frac{b}{\sqrt{2a^{2}+5}}$
|