Bất đẳng thức

Tạo bởi: confusion
Danh sách câu hỏi trong sổ
10
phiếu
1đáp án
1K lượt xem

cho a,b,c dương$,a+b+c=1.$chứng minh:
$\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{15}{4}$
cho a,b,c dương$,a+b+c=1.$chứng minh: $\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{15}{4}$

cho a,b,c dương$,a+b+c=1.$chứng minh:$\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq \frac{15}{4}$
10
phiếu
2đáp án
3K lượt xem

Cho $x;y;z>1$ và $xy+yz+zx=xyz$
Tìm min : $A=\Sigma \frac{x-1}{y^2}$
Matenmatics reminds you of invisible forms of the sound

Cho $x;y;z>1$ và $xy+yz+zx=xyz$Tìm min : $A=\Sigma \frac{x-1}{y^2}$
6
phiếu
2đáp án
1K lượt xem

Tìm GTLN của biểu thức $$M=abc$$
Cho $a,b,c \in \mathbb{N}^*$ thõa mãn $a+b+c=100$

Tìm GTLN của biểu thức $$M=abc$$
14
phiếu
3đáp án
3K lượt xem

$$\frac{1}{(a-b)^2}+\frac 1{(b-c)^2}+\frac 1{(c-a)^2} \ge \frac{4}{ab+bc+ca}$$
Chứng minh rằng với ba số thực không âm $a,b,c$ đôi một khác nhau thì

$$\frac{1}{(a-b)^2}+\frac 1{(b-c)^2}+\frac 1{(c-a)^2} \ge \frac{4}{ab+bc+ca}$$
12
phiếu
1đáp án
1K lượt xem

Cho các số dương $a,b,c $thỏa mãn:$a+b+c=3$.CMR:
$\frac{a^{2}+bc}{b+ca}+\frac{b^{2}+ca}{c+ab}+\frac{c^{2}+ab}{a+bc}\geq3$
Chắc dễ....((:

Cho các số dương $a,b,c $thỏa mãn:$a+b+c=3$.CMR:$\frac{a^{2}+bc}{b+ca}+\frac{b^{2}+ca}{c+ab}+\frac{c^{2}+ab}{a+bc}\geq3$
10
phiếu
1đáp án
4K lượt xem

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.
Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$. Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$

Cho $x;y;z>0$ thỏa mãn: $5(x^2+y^2+z^2)=9(xy+2yz+zx)$.Tìm GTLN: $P=\frac{x}{y^2+z^2}-\frac{1}{(x+y+z)^3}$
7
phiếu
1đáp án
1K lượt xem

cho $x,y$ là các số thực dương thỏa mãn $x^{4}+y^{4}+4=\frac{6}{xy}$. tìm $Min$ 
P=$\frac{1}{1+2x}+\frac{1}{1+2y}+\frac{3-2xy}{5-x^{2}-y^{2}}$
bất đẳng thức nha!!!

cho $x,y$ là các số thực dương thỏa mãn $x^{4}+y^{4}+4=\frac{6}{xy}$. tìm $Min$ P=$\frac{1}{1+2x}+\frac{1}{1+2y}+\frac{3-2xy}{5-x^{2}-y^{2}}$
13
phiếu
1đáp án
1K lượt xem

cho $a, b, c$ $\in$ R+ thỏa mãn $abc=1$. CMR:
$(a-1+\frac{1}{b})(b-1+\frac{1}{c})(c-1+\frac{1}{a})\leq 1$
nhân tiện ai có đề thi HSG toán 10 nào hay hay chia sẻ với mình nhé...cảm ơn trước!!!
bất đẳng thức...........

cho $a, b, c$ $\in$ R+ thỏa mãn $abc=1$. CMR:$(a-1+\frac{1}{b})(b-1+\frac{1}{c})(c-1+\frac{1}{a})\leq 1$nhân tiện ai có đề thi HSG toán 10 nào hay hay chia sẻ với mình nhé...cảm ơn trước!!!
10
phiếu
2đáp án
2K lượt xem

Cho a,b,c ko âm và $a+b+c>0$. CMR:
$\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$
Cho a,b,c ko âm và $a+b+c>0$. CMR: $\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$

Cho a,b,c ko âm và $a+b+c>0$. CMR:$\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$
8
phiếu
2đáp án
1K lượt xem

Cho các số thực dương $a, b, c$ thỏa mãn $abc=1$. Chứng minh rằng:
$\frac{a}{(ab+a+1)^2}+\frac{b}{(bc+b+1)^2}+\frac{c}{(ca+c+1)^2}\geq \frac{1}{a+b+c}$
Giúp mình tý nhỉ, mn ơi!!

Cho các số thực dương $a, b, c$ thỏa mãn $abc=1$. Chứng minh rằng:$\frac{a}{(ab+a+1)^2}+\frac{b}{(bc+b+1)^2}+\frac{c}{(ca+c+1)^2}\geq \frac{1}{a+b+c}$
10
phiếu
1đáp án
1K lượt xem

CMR $a^{a}.b^{b}\geq a^{b}.b^{a}$    $\forall a,b>0$
bđt đỉnh cao. =)

CMR $a^{a}.b^{b}\geq a^{b}.b^{a}$ $\forall a,b>0$
15
phiếu
5đáp án
6K lượt xem

(Bài Toán Thách Thức )
Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : 
 $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$

(Bài Toán Thách Thức )CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$

(Bài Toán Thách Thức )Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện : $abcd=1$ . CM bđt : $\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}}+\frac{1}{(1+d)^{2}} \geq 1$
11
phiếu
0đáp án
1K lượt xem

Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện $abcd=1$ . Chứng minh bất đẳng thức : 
  $\frac{1}{1+a+b+c}+\frac{1}{1+b+c+d}+\frac{1}{1+c+d+a}+\frac{1}{1+d+a+b} \leq  \frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c}+\frac{1}{3+d}$
BĐT hay và khó !

Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện $abcd=1$ . Chứng minh bất đẳng thức : $\frac{1}{1+a+b+c}+\frac{1}{1+b+c+d}+\frac{1}{1+c+d+a}+\frac{1}{1+d+a+b} \leq \frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c}+\frac{1}{3+d}$
8
phiếu
1đáp án
1K lượt xem

Cho ba số x,y,z $\epsilon$ $\left[ {1;3} \right]$ .Tìm giá trị nhỏ nhất của biểu thức: P=$\frac{36x}{yz} + \frac{2y}{xz} + \frac{z}{xy}$
vừa lặt được cái đề!!!!!!!!!!!!!!!!!!!

Cho ba số x,y,z $\epsilon$ $\left[ {1;3} \right]$ .Tìm giá trị nhỏ nhất của biểu thức: P=$\frac{36x}{yz} + \frac{2y}{xz} + \frac{z}{xy}$
5
phiếu
0đáp án
479 lượt xem

 cho $a,b,c>0$ thỏa mãn $3(a+b+c)\geq ab+bc+ca+2$. CMR:
 $\frac{a^{3}+bc}{2} +\frac{b^{3}+ca}{3} +\frac{c^{3}+ab}{5}\geq \frac{\sqrt{abc(\sqrt{a}+\sqrt{b}+\sqrt{c})}}{3}$
BĐT

cho $a,b,c>0$ thỏa mãn $3(a+b+c)\geq ab+bc+ca+2$. CMR: $\frac{a^{3}+bc}{2} +\frac{b^{3}+ca}{3} +\frac{c^{3}+ab}{5}\geq \frac{\sqrt{abc(\sqrt{a}+\sqrt{b}+\sqrt{c})}}{3}$

Trang trước1...56789...18Trang sau 153050mỗi trang