Bất đẳng thức

Tạo bởi: confusion
Danh sách câu hỏi trong sổ
6
phiếu
1đáp án
836 lượt xem

Cho $a,b,c>0$. Chứng minh rằng: $\sum \frac{a}{b+c}\le \frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}$
Cho $a,b,c>0$. Chứng minh rằng: $\sum \frac{a}{b+c}\le \frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}$

Cho $a,b,c>0$. Chứng minh rằng: $\sum \frac{a}{b+c}\le \frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}$
11
phiếu
0đáp án
532 lượt xem

Cho $a,b,c$ là các số thực thỏa mãn đồng thời các điều kiện sau:
             $a+b+c=(a-2b-2c)^{2}>0$ và $0<b+c<1$
  $\mathbb P=\frac{b+c}{a+3b+3c}+\frac{2a^{2}}{3}\left[ \frac{1}{3\sqrt{a^{3}+(b+c)(4a^{3}+a^{2})}}{-} \frac{1}{(b+c)^{2}\sqrt[3]{a+b+c}}\right]$
BĐT

Cho $a,b,c$ là các số thực thỏa mãn đồng thời các điều kiện sau: $a+b+c=(a-2b-2c)^{2}>0$ và $0<b+c<1$ $\mathbb P=\frac{b+c}{a+3b+3c}+\frac{2a^{2}}{3}\left[ \frac{1}{3\sqrt{a^{3}+(b+c)(4a^{3}+a^{2})}}{-} \frac{1}{(b+c)^{2}\sqrt[3]{a+b+c}}\right]$
14
phiếu
0đáp án
730 lượt xem

Cho $x,y,z>0$, chứng minh $$\frac{2(x+y+z)}{3} \ge\sqrt{\frac{x^2+y^2+z^2}3}+\sqrt[3]{xyz}$$

(6) [đang ẩn]

Cho $x,y,z>0$, chứng minh $$\frac{2(x+y+z)}{3} \ge\sqrt{\frac{x^2+y^2+z^2}3}+\sqrt[3]{xyz}$$
6
phiếu
1đáp án
708 lượt xem

Cho $a,b,c>0$ thỏa mãn: $a+b+c=3$. Cmr:
$(a+b)(b+c)(c+a)\ge (c+ab)(b+ca)(a+bc)$.
Xem thêm:
Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
help me! Help me!

Cho $a,b,c>0$ thỏa mãn: $a+b+c=3$. Cmr:$(a+b)(b+c)(c+a)\ge (c+ab)(b+ca)(a+bc)$.Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
6
phiếu
2đáp án
1K lượt xem

Cho $x,y,z$ là các số thực dương thỏa mãn điều kiện $x^2+y^2+z^2+2xyz=1$
CMR
a) $xyz\leq \frac{1}{8}$
b) $x+y+z\leq \frac{3}{2}$
c) $xy+yz+zx\leq \frac{3}{4}\leq x^2+y^2+z^2$
d) $xy+yz+zx\leq \frac{1}{2}+2xyz$ .

Xem thêm:
Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
ko cần treo sò hộ

Cho $x,y,z$ là các số thực dương thỏa mãn điều kiện $x^2+y^2+z^2+2xyz=1$CMRa) $xyz\leq \frac{1}{8}$b) $x+y+z\leq \frac{3}{2}$c) $xy+yz+zx\leq \frac{3}{4}\leq x^2+y^2+z^2$d) $xy+yz+zx\leq \frac{1}{2}+2xyz$ .Xem thêm:Mời mọi người tham gia cuộc thi do...
0
phiếu
1đáp án
1K lượt xem

Với a, b, c là các số thực dương. Chứng minh rằng:

Đề thi học sinh giỏi lớp 9 cấp Huyện, phòng GD-ĐT Đức Thọ

Xem thêm:
Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
zzzzzzzzzzzzzzzzzzzzzzz

Với a, b, c là các số thực dương. Chứng minh rằng:Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
8
phiếu
0đáp án
510 lượt xem

Cho $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=3$. Tìm $\max P$
$$P=\frac{a^2}{2(a+1)^2+b}+\frac{b^2}{2(b+1)^2+c}+\frac{c^2}{2(c+1)^2+a}$$

(4)

Cho $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=3$. Tìm $\max P$$$P=\frac{a^2}{2(a+1)^2+b}+\frac{b^2}{2(b+1)^2+c}+\frac{c^2}{2(c+1)^2+a}$$
9
phiếu
2đáp án
1K lượt xem

Cho $a,b,c$ là các số dương tm đk:
$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1$
 CMR: $a+b+c\geq ab+bc+ca$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Chán quá.Đăng lên lấy khí thế tí

Cho $a,b,c$ là các số dương tm đk:$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\geq 1$ CMR: $a+b+c\geq ab+bc+ca$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
7
phiếu
2đáp án
2K lượt xem

$B1:$cho x,y,z là các số thực dương .Chứng minh:
$a,Tìm Min:\frac{1}{2x+y+\sqrt{8yz}}+\sqrt{2y^2+2(x+z)^2+3}$
$b,$chứng minh$:\frac{24}{13x+12\sqrt{xy}+16\sqrt{yz}}+2(x+y+z)\geq \frac{7}{2}$
B2:Cho $x,y,z>0$ thỏa$:x^2+y^2+z^2\leq2y+2$.Chứng minh$:\frac{1}{x+y+z+1}+\sqrt{2xy}+\sqrt{2yz}\geq \frac{21}{5}$
giúp e vài bài nữa vs

$B1:$cho x,y,z là các số thực dương .Chứng minh:$a,Tìm Min:\frac{1}{2x+y+\sqrt{8yz}}+\sqrt{2y^2+2(x+z)^2+3}$$b,$chứng minh$:\frac{24}{13x+12\sqrt{xy}+16\sqrt{yz}}+2(x+y+z)\geq \frac{7}{2}$B2:Cho $x,y,z>0$ thỏa$:x^2+y^2+z^2\leq2y+2$.Chứng...
10
phiếu
1đáp án
1K lượt xem

cho $x,y,$là các số thực dương thoả mãn $xy+y-3x+1=0$
tìm $min$ của:
$A=\frac{8}{[x(y+3)]^{3}}+\frac{8(xy)^{3}}{(1+3x)^{3}}-\frac{\sqrt{1+(xy)^{2}}}{x}$
chúc mọi người vui vẻ...
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Bất đẳng thức.......:3

cho $x,y,$là các số thực dương thoả mãn $xy+y-3x+1=0$tìm $min$ của:$A=\frac{8}{[x(y+3)]^{3}}+\frac{8(xy)^{3}}{(1+3x)^{3}}-\frac{\sqrt{1+(xy)^{2}}}{x}$chúc mọi người vui vẻ...Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
10
phiếu
2đáp án
2K lượt xem

Cho các số thực dương $a,b,c$ thỏa mãn: $a^2+2b^2+3c^2=1$. Tìm giá trị nhỏ nhất của biểu thức: $P=2a^3+3b^3+4c^3$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Nếu thấy hay thì vote nha

Cho các số thực dương $a,b,c$ thỏa mãn: $a^2+2b^2+3c^2=1$. Tìm giá trị nhỏ nhất của biểu thức: $P=2a^3+3b^3+4c^3$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
7
phiếu
1đáp án
1K lượt xem

cho $a,b,c\geq0$ và k có 2 số nào đồng thời =0.CMR
 $  \sum\sqrt[3]{\frac{a^{2}+bc}{b^{2}+c^{2}}}\geq \frac{9\sqrt[3]{abc}}{a+b+c}$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Quà gặp mặt. Mk là mem ms mong mọi người giúp đỡ

cho $a,b,c\geq0$ và k có 2 số nào đồng thời =0.CMR $ \sum\sqrt[3]{\frac{a^{2}+bc}{b^{2}+c^{2}}}\geq \frac{9\sqrt[3]{abc}}{a+b+c}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
6
phiếu
0đáp án
1K lượt xem

Bạn nào có tài khoản vip trên Moon.vn không học nữa thì cho mình xin với!!!! Cần gấp mấy tài liệu ôn thi ĐH ý mà!!!! Xin cảm ơn trước nhé!!!!!
Chống Spam ^_^ : 
 Giả sử $a,b,c$ là các số thực không âm thỏa mãn $ab+bc+ca=1$ . Chứng minh : 
  $ \frac{1}{\sqrt{a^{2}+bc}}+\frac{1}{\sqrt{b^{2}+ac}}+\frac{1}{\sqrt{c^{2}+ab}} \geq  2\sqrt{2}$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !
Xin tài khoản Moon.vn!!! Đồng thời kiếm danh vọng!!!

Bạn nào có tài khoản vip trên Moon.vn không học nữa thì cho mình xin với!!!! Cần gấp mấy tài liệu ôn thi ĐH ý mà!!!! Xin cảm ơn trước nhé!!!!!Chống Spam ^_^ : Giả sử $a,b,c$ là các số thực không âm thỏa mãn $ab+bc+ca=1$ . Chứng minh : $...
5
phiếu
4đáp án
1K lượt xem

1) chứng minh rằng với moj x,y,z thì
$x^2 + 2y^2 + 2z^2 \geq  2xy +2yz + 2z - 2$
2) chứng minh rằng với mọi x,y,z > 0 thì
$\frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \geq  2( \frac{1}{x} + \frac{1}{y} - \frac{1}{z})$ 

*Em cảm ơn ạ
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !

TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !

Toán về bất đẳng thức

1) chứng minh rằng với moj x,y,z thì$x^2 + 2y^2 + 2z^2 \geq 2xy +2yz + 2z - 2$2) chứng minh rằng với mọi x,y,z > 0 thì$\frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \geq 2( \frac{1}{x} + \frac{1}{y} - \frac{1}{z})$ *Em cảm ơn ạXem thêm : Mời mọi...
12
phiếu
0đáp án
534 lượt xem

cho các số dương $a,b,c$ thỏa mãn: $ab^{2}+bc^{2}+ca^{2}=3$. c/m: $\frac{2a^{5}+3b^{5}}{ab}+\frac{2b^{5}+3c^{5}}{bc}+\frac{2c^{5}+3a^{5}}{ca}\geq 15.(a^{3}+b^{3}+c^{3}-2)$
Xem thêm : 
Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !

TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !

mỗi ngày vài câu hỏi

cho các số dương $a,b,c$ thỏa mãn: $ab^{2}+bc^{2}+ca^{2}=3$. c/m: $\frac{2a^{5}+3b^{5}}{ab}+\frac{2b^{5}+3c^{5}}{bc}+\frac{2c^{5}+3a^{5}}{ca}\geq 15.(a^{3}+b^{3}+c^{3}-2)$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC...
8
phiếu
1đáp án
889 lượt xem

cho x,y,z là các số dương thay đổi thỏa mãn x + y + 2z = 3
Tìm MIN $P=x^2+y^2+4z^2+\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}$
câu 10Đ nhé!!!

cho x,y,z là các số dương thay đổi thỏa mãn x + y + 2z = 3Tìm MIN $P=x^2+y^2+4z^2+\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}$
7
phiếu
1đáp án
807 lượt xem

Cho $a,b,c \in R , \frac{1}{a^{2}+2}+\frac{1}{b^{2}+2}+\frac{1}{c^{2}+2}=1$
CMR $ab+bc+ca\leq3$
Cho $a,b,c \in R , \frac{1}{a^{2}+2}+\frac{1}{b^{2}+2}+\frac{1}{c^{2}+2}=1$

Cho $a,b,c \in R , \frac{1}{a^{2}+2}+\frac{1}{b^{2}+2}+\frac{1}{c^{2}+2}=1$CMR $ab+bc+ca\leq3$
4
phiếu
2đáp án
1K lượt xem

Cho $a, b, c>0$ và $a+b+c=4$ 

CMR: $(a+b)(b+c)(c+a) \geq a^{3}b^{3}c^{3}$

BĐT 8 khó!!! (part 2)

Cho $a, b, c>0$ và $a+b+c=4$ CMR: $(a+b)(b+c)(c+a) \geq a^{3}b^{3}c^{3}$
8
phiếu
1đáp án
831 lượt xem

Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{3x^2+3y^2-4xy}+\sqrt{3y^2+3z^2-4yz}+\sqrt{3z^2+3x^2-4zx} \le 3\sqrt{2}$.
 Tìm min:
$T=\frac{1}{\sqrt{8^x+1}}\frac{1}{\sqrt{8^y+1}}+\frac{1}{\sqrt{8^z+1}}$
BĐT số 6

Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{3x^2+3y^2-4xy}+\sqrt{3y^2+3z^2-4yz}+\sqrt{3z^2+3x^2-4zx} \le 3\sqrt{2}$. Tìm min:$T=\frac{1}{\sqrt{8^x+1}}\frac{1}{\sqrt{8^y+1}}+\frac{1}{\sqrt{8^z+1}}$
7
phiếu
1đáp án
592 lượt xem

Cho các số thực bất kì $a,b,c$ sao cho $ab+bc+ca=-1$ hoặc $a+b+c=-abc$.
CMR:$\frac{-1}{2}\leq \Sigma \frac{a}{a^{2}+1}\leq \frac{1}{2}$
Bài này hay!!!

Cho các số thực bất kì $a,b,c$ sao cho $ab+bc+ca=-1$ hoặc $a+b+c=-abc$.CMR:$\frac{-1}{2}\leq \Sigma \frac{a}{a^{2}+1}\leq \frac{1}{2}$
7
phiếu
1đáp án
611 lượt xem

Cho các số thực dương $x,y,z$ sao cho $x+y+z=1$.
CMR:$\frac{1}{yz+x+\frac{1}{x}}+\frac{1}{zx+y+\frac{1}{y}}+\frac{1}{xy+z+\frac{1}{z}}\leq \frac{27}{31}$
BĐT cổ điển! Chắc dễ...

Cho các số thực dương $x,y,z$ sao cho $x+y+z=1$.CMR:$\frac{1}{yz+x+\frac{1}{x}}+\frac{1}{zx+y+\frac{1}{y}}+\frac{1}{xy+z+\frac{1}{z}}\leq \frac{27}{31}$
7
phiếu
2đáp án
943 lượt xem

Cho$ x,y,z\geq 0 và x+y+z=4. Tìm max: P=xy^{3}+yz^{3}+zx^{3}$
Gấp mn

Cho$ x,y,z\geq 0 và x+y+z=4. Tìm max: P=xy^{3}+yz^{3}+zx^{3}$
4
phiếu
1đáp án
811 lượt xem

Cmr: $\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)}\ge 4(xy+yz+zx)$
uom mam BDT

Cmr: $\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)}\ge 4(xy+yz+zx)$
17
phiếu
1đáp án
1K lượt xem

Cho a,b,c là các số dương thỏa mãn $a+b+c=3$.CMR:
$a^{2}b+b^{2}c+c^{2}a\geq \frac{9a^{2}b^{2}c^{2}}{1+2a^{2}b^{2}c^{2}}$
BĐT

Cho a,b,c là các số dương thỏa mãn $a+b+c=3$.CMR:$a^{2}b+b^{2}c+c^{2}a\geq \frac{9a^{2}b^{2}c^{2}}{1+2a^{2}b^{2}c^{2}}$
6
phiếu
1đáp án
969 lượt xem

cho 3 số thực $x, y, z$ thỏa mãn $xyz=2\sqrt{2}$. Chứng minh rằng :
$\frac{x^8 + y^8}{x^4 + y^4 +x^2.y^2} +\frac{y^8 + z^8}{y^4 + z^4 +y^2.z^2} + \frac{z^8 + x^8}{z^4 + x^4 + z^2.x^2} \geq 8 $
Giải bất đẳng thức hộ cái :v

cho 3 số thực $x, y, z$ thỏa mãn $xyz=2\sqrt{2}$. Chứng minh rằng :$\frac{x^8 + y^8}{x^4 + y^4 +x^2.y^2} +\frac{y^8 + z^8}{y^4 + z^4 +y^2.z^2} + \frac{z^8 + x^8}{z^4 + x^4 + z^2.x^2} \geq 8 $
8
phiếu
3đáp án
2K lượt xem

$\sum \frac{1}{a(1+b)}\geq \frac{3}{\sqrt[3]{abc}(1+\sqrt[3]{abc})}$
help me [đang ẩn]

$\sum \frac{1}{a(1+b)}\geq \frac{3}{\sqrt[3]{abc}(1+\sqrt[3]{abc})}$
6
phiếu
0đáp án
165 lượt xem

Cho $x,y,z \ne 1$ thỏa mãn  $xyz+x+y+z=xy+yz+zx+2$ . Chứng minh BDT :
$$\frac x{x^2-x+1}+\frac{y}{y^2-y+1}+\frac{z}{z^2-z+1} \le 2$$
vừa chế thử 1 câu bdt :)) [đang ẩn]

Cho $x,y,z \ne 1$ thỏa mãn $xyz+x+y+z=xy+yz+zx+2$ . Chứng minh BDT :$$\frac x{x^2-x+1}+\frac{y}{y^2-y+1}+\frac{z}{z^2-z+1} \le 2$$
8
phiếu
1đáp án
787 lượt xem

Cho các số thực dương $a, b, c$ thỏa mãn $a \leq b \leq c$ và $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
Tìm min $P=a.b^{2}.c^{3}$
Đề siêu ngắn gọn

Cho các số thực dương $a, b, c$ thỏa mãn $a \leq b \leq c$ và $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.Tìm min $P=a.b^{2}.c^{3}$
7
phiếu
2đáp án
873 lượt xem

Cho các số thực dương a,b,c.CM
$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
CMR....

Cho các số thực dương a,b,c.CM$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
5
phiếu
1đáp án
974 lượt xem

Với a, b, c dương, và thỏa mãn: a+2b+4c = 12 chứng minh rằng:
$ \frac{2ab}{a+2b} $ + $ \frac{8bc}{2b+4c} $ + $ \frac{4ac}{4c+a} $ $\leq $ 6
mn giúp với, cảm ơn nhiều ạ

Với a, b, c dương, và thỏa mãn: a+2b+4c = 12 chứng minh rằng:$ \frac{2ab}{a+2b} $ + $ \frac{8bc}{2b+4c} $ + $ \frac{4ac}{4c+a} $ $\leq $ 6

12345...9Trang sau 153050mỗi trang