GPT: $(\frac{1}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{x})^{2}=\frac{4(1+\sqrt{4x-3})}{x+\sqrt{x^{2}+x}}$
Next:D
GPT:$(\frac{1}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{x})^{2}=\frac{4(1+\sqrt{4x-3})}{x+\sqrt{x^{2}+x}}$
|
|
Cho x,y,z >0 Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
Toán 9, mọi người giúp mình với!
Cho x,y,z >0Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
|
|
Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh : $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
bất đẳng thức 4
Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh : $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
|
|
Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức :
$P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$
bất đẳng thức 1
Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức : $P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$
|
|
Cho các số thực $x,y,z$ th oả mãn điều kiện $x\geq 1;y\geq 2;z\geq3 $ và $\frac{x^{2}-x+1}{x+\sqrt{x-1}}+\frac{y^{2}-y+2}{y+\sqrt{y-2}}+\frac{z^{2}-z+3}{z+\sqrt{z-3}}=12$ Tìm GTLN,GTNN của $A=x+y+z$
min,max
Cho các số thực $x,y,z$ thoả mãn điều kiện $x\geq 1;y\geq 2;z\geq3 $ và $\frac{x^{2}-x+1}{x+\sqrt{x-1}}+\frac{y^{2}-y+2}{y+\sqrt{y-2}}+\frac{z^{2}-z+3}{z+\sqrt{z-3}}=12$Tìm GTLN,GTNN của $A=x+y+z$
|
|
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$: là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1.$
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
|
|
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức:$S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$
|
|
Cho các số thực không âm $x,y,z$ thỏa mãn $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac 94$. Tìm $\max F$ $$F=\sqrt[3]{(x^2-1)^2}+\sqrt[3]{(y^2-1)^2}+\sqrt[3]{(z^2-1)^2}$$
(9)
Cho các số thực không âm $x,y,z$ thỏa mãn $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac 94$. Tìm $\max F$$$F=\sqrt[3]{(x^2-1)^2}+\sqrt[3]{(y^2-1)^2}+\sqrt[3]{(z^2-1)^2}$$
|
|
Cho $a,b \in (0,1)$ thỏa mãn $(a^{3}+b^{3})(a+b)-ab(a-1)(b-1)=0$ .Tìm GTLN của biểu thức :
$F= \frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab-a^{2}-b^{2}$
chúc các bạn học tốt !
bất đẳng thức nè
Cho $a,b \in (0,1)$ thỏa mãn $(a^{3}+b^{3})(a+b)-ab(a-1)(b-1)=0$ .Tìm GTLN của biểu thức : $F= \frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab-a^{2}-b^{2}$ chúc các bạn học tốt !
|
|
Cho các số thực a,b thỏa mãn $ a,b \epsilon [\frac{1}{2};1]$. Tìm giá trị nhỏ nhất của biểu thức:
P=$a^5b +ab^5+ \frac{6}{a^2+b^2} -3(a+b)$
Giá trị nhỏ nhất của biểu thức
Cho các số thực a,b thỏa mãn $ a,b \epsilon [\frac{1}{2};1]$. Tìm giá trị nhỏ nhất của biểu thức:P=$a^5b +ab^5+ \frac{6}{a^2+b^2} -3(a+b)$
|
|
Cmr: $\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}$
|
|
Cho $x \ge y \ge z \ge 0,x+y+z=6$.Chứng minh : $$\frac{1}{x^2+6}+\frac{1}{y^2+6}+\frac{1}{z^2+6} \ge \frac 3{10}$$
$\color{red}{(8)}$
Cho $x \ge y \ge z \ge 0,x+y+z=6$.Chứng minh :$$\frac{1}{x^2+6}+\frac{1}{y^2+6}+\frac{1}{z^2+6} \ge \frac 3{10}$$
|
|
cho các số thực x,y,z thỏa mãn x>2, y>1, z>0. tìm giá trị lớn nhất của biểu thức: P= $\frac{1}{2\sqrt{x^{2}+y^{2}+z^{2}-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}$
:3
cho các số thực x,y,z thỏa mãn x>2, y>1, z>0. tìm giá trị lớn nhất của biểu thức: P= $\frac{1}{2\sqrt{x^{2}+y^{2}+z^{2}-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}$
|
|
Cho $x,y,z$ là các số thực dương thỏa mãn:$7(x^{2}+y^{2}+z^{2})=11(xy+yz+zx)$. CMR:$\frac{51}{28}\leq \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\leq 2$
Lâu lâu ms đăng bài :D
Cho $x,y,z$ là các số thực dương thỏa mãn:$7(x^{2}+y^{2}+z^{2})=11(xy+yz+zx)$.CMR:$\frac{51}{28}\leq \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\leq 2$
|
|
Cho các số thực $x,y,z\geq1$ và thỏa mãn $3(x+y+z)=x^{2}+y^{2}+z^{2}+2xy$. Tìm min $P=\frac{x^{2}}{(x+y)^{2}+x}+\frac{x}{z^{2}+x}$ Xem thêm: Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
GTNN
Cho các số thực $x,y,z\geq1$ và thỏa mãn $3(x+y+z)=x^{2}+y^{2}+z^{2}+2xy$.Tìm min $P=\frac{x^{2}}{(x+y)^{2}+x}+\frac{x}{z^{2}+x}$Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
|
|
Cho $\color{red}{x,y,z}$ là các số thực dương tùy ý. Tìm giá trị nhỏ nhất của biểu thức: $$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$$
$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$
Cho $\color{red}{x,y,z}$ là các số thực dương tùy ý. Tìm giá trị nhỏ nhất của biểu thức:$$\color{green}{\mathbb F=\frac{(x+y+z)^3+9xyz}{xy+yz+zx}+\frac{2}{\sqrt{x+y+z}}}$$
|
|
Với các số thực dương a,b thỏa mãn: $a^2+b^2=ab+1$. Tìm GTLN của biểu thức: $P=\sqrt{7-3ab}+\frac{a-2}{a^2+1}+\frac{b-2}{b^2+1}$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
Ôn thi đại học
Với các số thực dương a,b thỏa mãn: $a^2+b^2=ab+1$. Tìm GTLN của biểu thức:$P=\sqrt{7-3ab}+\frac{a-2}{a^2+1}+\frac{b-2}{b^2+1}$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
|
|
cho 5 số thực $x,y,z,t,s$ thỏa mãn $0
tìm GTNN của biểu thức $T=xyz+yzt+zts+tsx+sxy$ Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK ! TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
mình thì thiên về đề bài đơn giản thôi <3
cho 5 số thực $x,y,z,t,s$ thỏa mãn $0tìm GTNN của biểu thức $T=xyz+yzt+zts+tsx+sxy$Xem thêm : Mời mọi người tham gia cuộc thi do các Admin tổ chức nhé CLICK !TOPIC về HỆ-BẤT-PHƯƠNG TRÌNH trong các đề thi Click !
|
|
Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{3x^2+3y^2-4xy}+\sqrt{3y^2+3z^2-4yz}+\sqrt{3z^2+3x^2-4zx} \le 3\sqrt{2}$. Tìm min: $T=\frac{1}{\sqrt{8^x+1}}\frac{1}{\sqrt{8^y+1}}+\frac{1}{\sqrt{8^z+1}}$
BĐT số 6
Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{3x^2+3y^2-4xy}+\sqrt{3y^2+3z^2-4yz}+\sqrt{3z^2+3x^2-4zx} \le 3\sqrt{2}$. Tìm min:$T=\frac{1}{\sqrt{8^x+1}}\frac{1}{\sqrt{8^y+1}}+\frac{1}{\sqrt{8^z+1}}$
|
|
Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
Giúp minh với nha !!!
Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
|
|
Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$ Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
Bài toán chưa có lời giải ...
Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
|
|
Cho $a,b,c>0$ thỏa mãn $\frac{4a}{b}(1+\frac{2c}{b})+\frac{b}{a}(1+\frac{c}{a})=6$Tìm GTNN của biểu thức:$P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab}{c(2a+b)}$
|
|
Cho các số thực dương a,b,c thỏa mãn đk abc=1.CMR: $\frac{1}{(a+1)^{2}+b^{2}+1}+\frac{1}{(b+1)^{2}+c^{2}+1}+\frac{1}{(c+1)^{2}+a^{2}+1}\leq \frac{1}{2}$
Ẩn phụ thần công kích....luyện tiếp đi Nam ca
Cho các số thực dương a,b,c thỏa mãn đk abc=1.CMR:$\frac{1}{(a+1)^{2}+b^{2}+1}+\frac{1}{(b+1)^{2}+c^{2}+1}+\frac{1}{(c+1)^{2}+a^{2}+1}\leq \frac{1}{2}$
|
|
Cho 3 số dương x,y,z thỏa mãn:$x+3y+5z\leq 3$.Cmr: $3xy.\sqrt{625z^{4}+4}+15yz.\sqrt{x^{4}+4}+5zx.\sqrt{81y^{4}+4}\geq 45\sqrt{5}xyz$
Ẩn phụ thần công kích nè Nam ca...!!!
Cho 3 số dương x,y,z thỏa mãn:$x+3y+5z\leq 3$.Cmr:$3xy.\sqrt{625z^{4}+4}+15yz.\sqrt{x^{4}+4}+5zx.\sqrt{81y^{4}+4}\geq 45\sqrt{5}xyz$
|
|
$\begin{cases}4x^{2}=(\sqrt{x^{2}+1}+1)(x^{2} -y^{3}+3y-2)\\ (x^{2}+y^{2})^{2}+2015y^{2}+2016=x^{2}+4032y\end{cases}$
help!!! giải hệ
$\begin{cases}4x^{2}=(\sqrt{x^{2}+1}+1)(x^{2} -y^{3}+3y-2)\\ (x^{2}+y^{2})^{2}+2015y^{2}+2016=x^{2}+4032y\end{cases}$
|
|
cho $a,b,c\in \left[0 {;} 2\right],ab+bc+ca=2$ .tìm $Min$ P=$\frac{1}{(a+b)^{2}}+\frac{16}{c^{4}}+\frac{abc}{2}$
BĐT nha mn!!!
cho $a,b,c\in \left[0 {;} 2\right],ab+bc+ca=2$ .tìm $Min$P=$\frac{1}{(a+b)^{2}}+\frac{16}{c^{4}}+\frac{abc}{2}$
|
|
Cho $a,b,c>0$ thỏa mãn $a+b+c\leq 1$ .CMR:$\frac{a\sqrt{a}}{a+\sqrt{ab}+b}+\frac{b\sqrt{b}}{b+\sqrt{bc}+c}+\frac{c\sqrt{c}}{c+\sqrt{ca}+a}+\frac{1}{27\sqrt{abc}}\geq \frac{4\sqrt{3}}{9}$
|
|
với $a,b,c $ dương, tìm min của:$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$
có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
đến hẹn lại lên....!?
với $a,b,c $ dương, tìm min của:$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
|
|
Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN: $P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
BĐT!!!
Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN:$P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
|
|
cho$ a,b,c \in R^{+}$...tìm min của : $A=\frac{a}{\sqrt{a^{2}+bc}}+\frac{b}{\sqrt{b^{2}+ca}}+\frac{c}{\sqrt{c^{2}+ab}}$ (mới tìm được 3 cách.!?)
ai là người tìm ra cách giải cuối cùng cho bài toán này ?!?
cho$ a,b,c \in R^{+}$...tìm min của :$A=\frac{a}{\sqrt{a^{2}+bc}}+\frac{b}{\sqrt{b^{2}+ca}}+\frac{c}{\sqrt{c^{2}+ab}}$(mới tìm được 3 cách.!?)
|
|
|