Sổ tay cá nhân

Tạo bởi: bloodys-rose
Danh sách câu hỏi trong sổ
14
phiếu
1đáp án
1K lượt xem

GPT:
$(\frac{1}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{x})^{2}=\frac{4(1+\sqrt{4x-3})}{x+\sqrt{x^{2}+x}}$
Next:D

GPT:$(\frac{1}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{x})^{2}=\frac{4(1+\sqrt{4x-3})}{x+\sqrt{x^{2}+x}}$
8
phiếu
1đáp án
1K lượt xem

Cho x,y,z >0
Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
Toán 9, mọi người giúp mình với!

Cho x,y,z >0Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
12
phiếu
2đáp án
1K lượt xem



      Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh :
  
      $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
bất đẳng thức 4

Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh : $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
11
phiếu
1đáp án
1K lượt xem


   Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức :
   

   $P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$
bất đẳng thức 1

Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức : $P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$
15
phiếu
1đáp án
1K lượt xem

Cho các số thực $x,y,z$ thoả mãn điều kiện $x\geq 1;y\geq 2;z\geq3 $ và 
$\frac{x^{2}-x+1}{x+\sqrt{x-1}}+\frac{y^{2}-y+2}{y+\sqrt{y-2}}+\frac{z^{2}-z+3}{z+\sqrt{z-3}}=12$
Tìm GTLN,GTNN của $A=x+y+z$
min,max

Cho các số thực $x,y,z$ thoả mãn điều kiện $x\geq 1;y\geq 2;z\geq3 $ và $\frac{x^{2}-x+1}{x+\sqrt{x-1}}+\frac{y^{2}-y+2}{y+\sqrt{y-2}}+\frac{z^{2}-z+3}{z+\sqrt{z-3}}=12$Tìm GTLN,GTNN của $A=x+y+z$
10
phiếu
3đáp án
1K lượt xem

 $\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$
 $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1.$

$\color{blue}{BÀI:1:CMR:\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq3(x^2+y^2+z^2),x,y,z }$:là các số thức dương $:x+y+z=1$ $\color{green}{BÀI:2:x,y,z>0,x+y+z=3.CMR:\frac{x^4}{(y+z)(y^2+z^2)}+\frac{y^4}{(x+z)(x^2+z^2)}+\frac{z^4}{(x+y)(y^2+x^2)}\geq \frac{3}{4}}$
5
phiếu
1đáp án
806 lượt xem

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức:
$S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức: $S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức:$S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$
9
phiếu
0đáp án
674 lượt xem

Cho các số thực không âm $x,y,z$ thỏa mãn $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac 94$. Tìm $\max F$
$$F=\sqrt[3]{(x^2-1)^2}+\sqrt[3]{(y^2-1)^2}+\sqrt[3]{(z^2-1)^2}$$
(9)

Cho các số thực không âm $x,y,z$ thỏa mãn $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac 94$. Tìm $\max F$$$F=\sqrt[3]{(x^2-1)^2}+\sqrt[3]{(y^2-1)^2}+\sqrt[3]{(z^2-1)^2}$$
14
phiếu
1đáp án
1K lượt xem

      


        Cho $a,b \in (0,1)$ thỏa mãn $(a^{3}+b^{3})(a+b)-ab(a-1)(b-1)=0$ .Tìm GTLN của biểu thức :

      $F= \frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab-a^{2}-b^{2}$

      chúc các bạn học tốt !
bất đẳng thức nè

Cho $a,b \in (0,1)$ thỏa mãn $(a^{3}+b^{3})(a+b)-ab(a-1)(b-1)=0$ .Tìm GTLN của biểu thức : $F= \frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab-a^{2}-b^{2}$ chúc các bạn học tốt !
5
phiếu
1đáp án
814 lượt xem

Cho các số thực a,b thỏa mãn $ a,b  \epsilon [\frac{1}{2};1]$. Tìm giá trị nhỏ nhất của biểu thức:

P=$a^5b +ab^5+ \frac{6}{a^2+b^2} -3(a+b)$
Giá trị nhỏ nhất của biểu thức

Cho các số thực a,b thỏa mãn $ a,b \epsilon [\frac{1}{2};1]$. Tìm giá trị nhỏ nhất của biểu thức:P=$a^5b +ab^5+ \frac{6}{a^2+b^2} -3(a+b)$
12
phiếu
2đáp án
1K lượt xem

Cmr: $\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}$
Cmr: $\color{red}{\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}}$

Cmr: $\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}$
14
phiếu
1đáp án
1K lượt xem

Cho $x \ge y \ge z \ge 0,x+y+z=6$.Chứng minh :
$$\frac{1}{x^2+6}+\frac{1}{y^2+6}+\frac{1}{z^2+6} \ge \frac 3{10}$$
$\color{red}{(8)}$

Cho $x \ge y \ge z \ge 0,x+y+z=6$.Chứng minh :$$\frac{1}{x^2+6}+\frac{1}{y^2+6}+\frac{1}{z^2+6} \ge \frac 3{10}$$
4
phiếu
1đáp án
938 lượt xem

cho các số thực x,y,z thỏa mãn x>2, y>1, z>0. tìm giá trị lớn nhất của biểu thức: 

P= $\frac{1}{2\sqrt{x^{2}+y^{2}+z^{2}-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}$

big_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grinbig_grin
:3

cho các số thực x,y,z thỏa mãn x>2, y>1, z>0. tìm giá trị lớn nhất của biểu thức: P= $\frac{1}{2\sqrt{x^{2}+y^{2}+z^{2}-2(2x+y-3)}}-\frac{1}{y(x-1)(z+1)}$
14
phiếu
1đáp án
1K lượt xem

Cho $x,y,z$ là các số thực dương thỏa mãn:$7(x^{2}+y^{2}+z^{2})=11(xy+yz+zx)$.
CMR:$\frac{51}{28}\leq \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\leq 2$
Lâu lâu ms đăng bài :D

Cho $x,y,z$ là các số thực dương thỏa mãn:$7(x^{2}+y^{2}+z^{2})=11(xy+yz+zx)$.CMR:$\frac{51}{28}\leq \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\leq 2$
8
phiếu
1đáp án
867 lượt xem

Cho các số thực $x,y,z\geq1$ và thỏa mãn $3(x+y+z)=x^{2}+y^{2}+z^{2}+2xy$.
Tìm min $P=\frac{x^{2}}{(x+y)^{2}+x}+\frac{x}{z^{2}+x}$
Xem thêm:
Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!
GTNN

Cho các số thực $x,y,z\geq1$ và thỏa mãn $3(x+y+z)=x^{2}+y^{2}+z^{2}+2xy$.Tìm min $P=\frac{x^{2}}{(x+y)^{2}+x}+\frac{x}{z^{2}+x}$Xem thêm:Mời mọi người tham gia cuộc thi do các Admin tổ chức CLICK!