cho $a, b, c$ $\in$ R + thỏa mãn $abc=1$. CMR: $(a-1+\frac{1}{b})(b-1+\frac{1}{c})(c-1+\frac{1}{a})\leq 1$ nhân tiện ai có đề thi HSG toán 10 nào hay hay chia sẻ với mình nhé...cảm ơn trước!!!
bất đẳng thức...........
cho $a, b, c$ $\in$ R+ thỏa mãn $abc=1$. CMR:$(a-1+\frac{1}{b})(b-1+\frac{1}{c})(c-1+\frac{1}{a})\leq 1$nhân tiện ai có đề thi HSG toán 10 nào hay hay chia sẻ với mình nhé...cảm ơn trước!!!
|
|
Cho a,b,c ko âm và $a+b+c>0$. CMR:$\frac{a^2}{5a^2+(b+c)^2}+\frac{b^2}{5b^2+(c+a)^2}+\frac{c^2}{5c^2+(a+b)^2}\leq \frac{1}{3}$
|
|
Cho các số thực dương $a, b, c$ thỏa mãn $abc=1$. Chứng minh rằng: $\frac{a}{(ab+a+1)^2}+\frac{b}{(bc+b+1)^2}+\frac{c}{(ca+c+1)^2}\geq \frac{1}{a+b+c}$
Giúp mình tý nhỉ, mn ơi!!
Cho các số thực dương $a, b, c$ thỏa mãn $abc=1$. Chứng minh rằng:$\frac{a}{(ab+a+1)^2}+\frac{b}{(bc+b+1)^2}+\frac{c}{(ca+c+1)^2}\geq \frac{1}{a+b+c}$
|
|
Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện $abcd=1$ . Chứng minh bất đẳng thức : $\frac{1}{1+a+b+c}+\frac{1}{1+b+c+d}+\frac{1}{1+c+d+a}+\frac{1}{1+d+a+b} \leq \frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c}+\frac{1}{3+d}$
BĐT hay và khó !
Cho các số thực dương $a,b,c,d$ thỏa mãn điều kiện $abcd=1$ . Chứng minh bất đẳng thức : $\frac{1}{1+a+b+c}+\frac{1}{1+b+c+d}+\frac{1}{1+c+d+a}+\frac{1}{1+d+a+b} \leq \frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c}+\frac{1}{3+d}$
|
|
cho $a,b,c>0$ thỏa mãn $3(a+b+c)\geq ab+bc+ca+2$. CMR: $\frac{a^{3}+bc}{2} +\frac{b^{3}+ca}{3} +\frac{c^{3}+ab}{5}\geq \frac{\sqrt{abc(\sqrt{a}+\sqrt{b}+\sqrt{c})}}{3}$
BĐT
cho $a,b,c>0$ thỏa mãn $3(a+b+c)\geq ab+bc+ca+2$. CMR: $\frac{a^{3}+bc}{2} +\frac{b^{3}+ca}{3} +\frac{c^{3}+ab}{5}\geq \frac{\sqrt{abc(\sqrt{a}+\sqrt{b}+\sqrt{c})}}{3}$
|
|
$\boxed{\frac1{(x+1)^3}+\frac 1{(y+1)^3}+\frac 1{(z+1)^3}\ge \frac 38} \forall x,y,z >0,xyz=1$
Chứng minh bất đẳng thức :
$\boxed{\frac1{(x+1)^3}+\frac 1{(y+1)^3}+\frac 1{(z+1)^3}\ge \frac 38} \forall x,y,z >0,xyz=1$
|
|
cho các số thực x,y,z,t,s, thỏa mãn $\left\{ \begin{array}{l} 0<x\leq y \leq z \leq t\leq s \\ x+y+z+t+s=1 \end{array} \right.$ tìm GTLN của T= $xyz+yzt+zts+tsx+sxy$
ai kèm mình bđt với nào. hứa sẽ ngoan <3
cho các số thực x,y,z,t,s, thỏa mãn $\left\{ \begin{array}{l} 0<x\leq y \leq z \leq t\leq s \\ x+y+z+t+s=1 \end{array} \right.$tìm GTLN của T= $xyz+yzt+zts+tsx+sxy$
|
|
Cho x,y,z>0 thỏa mãn: $xyz\geq 1; z\leq 1$. Tìm GTNN:$P=\frac{x}{1+y}+\frac{y}{1+x}+\frac{4-z^3}{3+3xy}$
|
|
C/mba2+cb2+ac2≥3(a2+b2+c2)
Lâu rồi ms gặp 1 BĐT hey!!
C/mba2+cb2+ac2≥3(a2+b2+c2)
|
|
(Đề thi thử chuyên HN Amesterdam năm 2016) Cho a,b,c là các số thực không nhỏ hơn 1.Chứng minh rằng: $\frac{a}{2a-1} + \frac{b}{2b-1} +\frac{c}{2c-1 } \geq \frac{18}{3+ab+bc+ac}$
(Đề thi thử chuyên HN Amesterdam năm 2016) [đang ẩn]
(Đề thi thử chuyên HN Amesterdam năm 2016) Cho a,b,c" role="presentation" style="display: inline; line-height: normal; font-size: 14px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none;...
|
|
\begin{cases}a, b, c >0 \\ CM : a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2} \end{cases}
làm hộ t ạ :))))))))))))
\begin{cases}a, b, c >0 \\ CM : a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2} \end{cases}
|
|
Cho $a,b,c,d \ge 0$ và $a+b+c+d=2$. C/m bđt : $$ \boxed{\boxed{\frac {1}{1+3a^2}+\frac 1{1+3b^2}+\frac 1{1+3c^2}+ \frac 1{1+3d^2} \ge \frac{16}7}}$$
Cần lắm lời giải !
Cho $a,b,c,d \ge 0$ và $a+b+c+d=2$. C/m bđt :$$ \boxed{\boxed{\frac {1}{1+3a^2}+\frac 1{1+3b^2}+\frac 1{1+3c^2}+ \frac 1{1+3d^2} \ge \frac{16}7}}$$
|
|
cho x,y>0 thỏa mãn $x+3y \leq 10. CMR \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}} \geq10$
bđt
cho x,y>0 thỏa mãn $x+3y \leq 10. CMR \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}} \geq10$
|
|
a,b,c là những số thực dương.CMR $\sqrt[3]{\frac{(a+b)(b+c)(c+a)}{abc}}\geq \frac{4}{3}(\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ca}+\frac{c^{2}}{c^{2}+ab})$
BĐT hay nè
a,b,c là những số thực dương.CMR$\sqrt[3]{\frac{(a+b)(b+c)(c+a)}{abc}}\geq \frac{4}{3}(\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ca}+\frac{c^{2}}{c^{2}+ab})$
|
|
Cho $3$ số $a,b,c$ dương thỏa mãn điều kiện $a+b+c=3$.CMR: $\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}{c^{2}+a^{2}+2}\leq \frac{3}{4}$
BĐT hay và khó.
Cho $3$ số $a,b,c$ dương thỏa mãn điều kiện $a+b+c=3$.CMR:$\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}{c^{2}+a^{2}+2}\leq \frac{3}{4}$
|
|
|