Bất đẳng thức

Tạo bởi: sunshine
Danh sách câu hỏi trong sổ
14
phiếu
0đáp án
927 lượt xem

Cho các số thực $a,b,c$ thỏa mãn $(a^{2}+4b^{2})(b^{2}+4c^{2})(c^{2}+4a^{2})=8$
Tìm max:$P=(a-2b)(b-2c)(c-2a)+14abc$

GTLN......

Cho các số thực $a,b,c$ thỏa mãn $(a^{2}+4b^{2})(b^{2}+4c^{2})(c^{2}+4a^{2})=8$Tìm max:$P=(a-2b)(b-2c)(c-2a)+14abc$
12
phiếu
0đáp án
561 lượt xem

cho 2 số $x,y$ thỏa mãn $x^{2}+y^{2}=1$. tìm $Max$
P=$\sqrt{(5+4y-4x^{2})(1-y)}   (\sqrt{2-2y}+\sqrt{2-x\sqrt{3}+y}+\sqrt{2+x\sqrt{3}+y})$
BĐT nha moi người!!!

cho 2 số $x,y$ thỏa mãn $x^{2}+y^{2}=1$. tìm $Max$P=$\sqrt{(5+4y-4x^{2})(1-y)} (\sqrt{2-2y}+\sqrt{2-x\sqrt{3}+y}+\sqrt{2+x\sqrt{3}+y})$
16
phiếu
1đáp án
1K lượt xem

CMR:
$a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2}$
(Làm+Vote) nhiều!!!!!!!!!!!!!!!

CMR:$a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2}$
14
phiếu
1đáp án
1K lượt xem

Chứng minh rằng : $\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} (1)\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}(2)$ với mọi $a, b, c > 0$.
ai làm giúp bài này vs

Chứng minh rằng : $\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} (1)\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}(2)$ với mọi $a, b, c > 0$.
3
phiếu
1đáp án
1K lượt xem

cm: $\frac{x^{3}}{x^{2}+xy+y^{2}} \geq  \frac{2x-y}{3}$voi moi so thuc duong x,y
Bat dang thuc

cm: $\frac{x^{3}}{x^{2}+xy+y^{2}} \geq \frac{2x-y}{3}$voi moi so thuc duong x,y
11
phiếu
2đáp án
1K lượt xem

chứng minh rằng:
$\frac{a^{n}+b^{n}}{2}\geq \frac{(a+b)^{n}}{2^{n}}$       (với mọi $n\in N^{*}$)
(có ai quan tâm đến phương pháp chứng minh BĐT này thì vote cho m ha)
bài cơ bản nhất của qui nạp toán học nè..!?

chứng minh rằng:$\frac{a^{n}+b^{n}}{2}\geq \frac{(a+b)^{n}}{2^{n}}$ (với mọi $n\in N^{*}$)(có ai quan tâm đến phương pháp chứng minh BĐT này thì vote cho m ha)
13
phiếu
4đáp án
2K lượt xem

Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :
$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
Ai giỏi BĐT nào ...^-^

Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
15
phiếu
9đáp án
5K lượt xem

cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$
+100000
cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$

cho 5 số nguyên dương $a,b,c,d,e$ thỏa mãn$:\frac{a}{1+a}+\frac{2b}{1+b^2}+\frac{3c}{1+c^3}+\frac{4d}{1+d^4}+\frac{5e}{1+e^5}\leq1.CMR:ab^2c^3d^4d^5\leq\frac{1}{14^{15}}$
15
phiếu
2đáp án
1K lượt xem

CM: Với $0\leq$$a$$\leq$$b$$\leq$$c$ thì $\frac{a^{2005}+b^{2005}+c^{2005}}{a^{2006}+b^{2006}+c^{2006}}$$\leq $$\frac{3}{a+b+c}$
BĐT bậc ...."khủng"!!!

CM: Với $0\leq$$a$$\leq$$b$$\leq$$c$ thì $\frac{a^{2005}+b^{2005}+c^{2005}}{a^{2006}+b^{2006}+c^{2006}}$$\leq $$\frac{3}{a+b+c}$
14
phiếu
1đáp án
1K lượt xem

Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ 
cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$
chứng minh rằng $x+y+z\leq 2+xyz$
BĐT Ngắn Gọn

Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$chứng minh rằng $x+y+z\leq 2+xyz$
19
phiếu
1đáp án
1K lượt xem

với $a,b,c $  dương, tìm min của:
$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$

có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
đến hẹn lại lên....!?

với $a,b,c $ dương, tìm min của:$A=\frac{\sqrt{a^{3}c}}{2\sqrt{b^{3}a}+3bc}+\frac{\sqrt{b^{3}a}}{2\sqrt{c^{3}b}+3ca}+\frac{\sqrt{c^{3}b}}{2\sqrt{a^{3}c}+3ab}$có ai thấy Bđt này hay không...!?nếu có thì vote giùm nha...!?
16
phiếu
1đáp án
1K lượt xem

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$
tìm min của:
$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$
ủng hộ mình nha...!?
đã từng thi rồi nè....kĩ thuật sử dụng bất đẳng thức...chọn điểm rơi...!?

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$tìm min của:$A=a+b+c+48(\frac{\sqrt{3}}{\sqrt{a+10}}+\frac{1}{\sqrt[3]{b+c}})$ủng hộ mình nha...!?
15
phiếu
0đáp án
883 lượt xem

cho $x,y,z,a,b,c$$\in R^{+}$.tìm min của:
$A=\frac{\sqrt{by}}{\sqrt{by+8cz}}+\frac{\sqrt{cz}}{\sqrt{cz+8ax}}+\frac{\sqrt{ax}}{\sqrt{ax+8by}}$
(thấy hay thì vote giùm mình nha mọi người)
mà nhớ làm theo nhiều cách nghe...
từ một bất đẳng thức đơn giản khác....!?

cho $x,y,z,a,b,c$$\in R^{+}$.tìm min của:$A=\frac{\sqrt{by}}{\sqrt{by+8cz}}+\frac{\sqrt{cz}}{\sqrt{cz+8ax}}+\frac{\sqrt{ax}}{\sqrt{ax+8by}}$(thấy hay thì vote giùm mình nha mọi người)mà nhớ làm theo nhiều cách nghe...
10
phiếu
1đáp án
1K lượt xem

$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$

(càng nhiều cách càng tốt nha)
BĐT

$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$(càng nhiều cách càng tốt nha)
16
phiếu
0đáp án
1K lượt xem

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :
$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$
đừng sợ =)))

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$

Trang trước1...89101112...16Trang sau 153050mỗi trang