Bất đẳng thức

Tạo bởi: sunshine
Danh sách câu hỏi trong sổ
7
phiếu
1đáp án
760 lượt xem

$5(\sqrt{x^2-4x+4}+\sqrt{x}-5\sqrt{x^3-4x^2+4x})\leq 25(x^2-4x+4)$
chương trình ôn thi đại học cho ai quan tâm nhé.

$5(\sqrt{x^2-4x+4}+\sqrt{x}-5\sqrt{x^3-4x^2+4x})\leq 25(x^2-4x+4)$
7
phiếu
0đáp án
565 lượt xem

Cho $x,y,z\in $[0;1].Tìm GTLN:
P=$\frac{x^{2}+2}{y^{2}+1}+\frac{y^{2}+2}{z^{2}+1}+\frac{z^{2}+2}{x^{2}+1}$
help me ^.^

Cho $x,y,z\in $[0;1].Tìm GTLN:P=$\frac{x^{2}+2}{y^{2}+1}+\frac{y^{2}+2}{z^{2}+1}+\frac{z^{2}+2}{x^{2}+1}$
5
phiếu
1đáp án
733 lượt xem

Chứng minh rằng $$\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\geq \frac{3}{2}$$
Cho $a,b,c>0$ và $ab+ac+bc=3$

Chứng minh rằng $$\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\geq \frac{3}{2}$$
7
phiếu
2đáp án
921 lượt xem

Cho các số thực dương a,b,c.CM
$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
CMR....

Cho các số thực dương a,b,c.CM$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
5
phiếu
1đáp án
587 lượt xem

cho các só thực dương a,b,c thõa mãn a.b.c=1
Tìm giá trị lớn nhát của biểu thức P=1\( a+b+1) + 1\(b+c+1) + 1\(a+c+1)
bất đẳng thức nè

cho các só thực dương a,b,c thõa mãn a.b.c=1Tìm giá trị lớn nhát của biểu thức P=1\( a+b+1) + 1\(b+c+1) + 1\(a+c+1)
5
phiếu
2đáp án
1K lượt xem

Cho các số thực a, b, c thỏa mãn $a^{2}+b^{2}+c^{2}= 1$. Tìm giá trị lớn nhất của biểu thức F = ab + bc + 2ac.
Ôn thi vào lớp 10

Cho các số thực a, b, c thỏa mãn $a^{2}+b^{2}+c^{2}= 1$. Tìm giá trị lớn nhất của biểu thức F = ab + bc + 2ac.
7
phiếu
1đáp án
1K lượt xem

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : 
 $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
Giúp minh với nha !!!

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
19
phiếu
1đáp án
2K lượt xem

Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$
Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
Bài toán chưa có lời giải ...

Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
11
phiếu
4đáp án
2K lượt xem

$$\frac 75 \le \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a} \le \frac 85$$
Cho $a,b,c$ là các số thực thuộc đoạn $\left[ \frac 13;3 \right]$. Chứng minh :

$$\frac 75 \le \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a} \le \frac 85$$
4
phiếu
0đáp án
535 lượt xem

Cho 3 số thực x,y,z thỏa:

\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}

Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
Hỏi bất phương trình!

Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
6
phiếu
1đáp án
1K lượt xem

Cho $a, b, c$ là các số thực dương thay đổi và thỏa mãn: $a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}$. Tìm giá trị lớn nhất của biểu thức $M=\frac{1}{a^{2}+b^{2}+3}+\frac{1}{b^{2}+c^{2}+3}+\frac{1}{c^{2}+a^{2}+3}$
Tìm giá trị lớn nhất của biểu thức $M=\frac{1}{a^{2}+b^{2}+3}+\frac{1}{b^{2}+c^{2}+3}+\frac{1}{c^{2}+a^{2}+3}$

Cho $a, b, c$ là các số thực dương thay đổi và thỏa mãn: $a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}$. Tìm giá trị lớn nhất của biểu thức $M=\frac{1}{a^{2}+b^{2}+3}+\frac{1}{b^{2}+c^{2}+3}+\frac{1}{c^{2}+a^{2}+3}$
4
phiếu
0đáp án
892 lượt xem

Cho $a,b,c$ là độ dài 3 cạnh của 1 tam giác chứng minh rằng 
 $\frac{3}{2} < \sqrt{\frac{a}{b+c}} +\sqrt{\frac{b}{a+c}} +\sqrt{\frac{c}{a+b}} < \frac{4 \pi }{5}$
cần gấp m.n làm giúp vs

Cho $a,b,c$ là độ dài 3 cạnh của 1 tam giác chứng minh rằng $\frac{3}{2} < \sqrt{\frac{a}{b+c}} +\sqrt{\frac{b}{a+c}} +\sqrt{\frac{c}{a+b}} < \frac{4 \pi }{5}$
10
phiếu
12đáp án
7K lượt xem

$\frac{1}{\sqrt{1+8a}}+\frac{1}{\sqrt{1+8b}}+\frac{1}{\sqrt{1+8c}} \ge 1$
Cho $a,b,c$ là các số thực dương có tích bằng 1. Cm:

$\frac{1}{\sqrt{1+8a}}+\frac{1}{\sqrt{1+8b}}+\frac{1}{\sqrt{1+8c}} \ge 1$
10
phiếu
0đáp án
362 lượt xem

cho $\frac{1}{2}\leq a \leq 1 \leq b \leq2 \leq c\leq3,a+b+c=4$.
tìm $Min$
P=$\frac{1}{a^{2}}+\frac{3}{b^{2}+2}+\frac{5}{c^{2}+6} +\frac{3abc+8}{24}$
bđt

cho $\frac{1}{2}\leq a \leq 1 \leq b \leq2 \leq c\leq3,a+b+c=4$.tìm $Min$P=$\frac{1}{a^{2}}+\frac{3}{b^{2}+2}+\frac{5}{c^{2}+6} +\frac{3abc+8}{24}$
10
phiếu
2đáp án
3K lượt xem

Cho $a \geq 1$. Tìm GTNN của: $y=\sqrt{a+\cos x}+\sqrt{a+ \sin x}$
Cho $a \geq 1$. Tìm GTNN của: $y=\sqrt{a+\cos x}+\sqrt{a+ \sin x}$

Cho $a \geq 1$. Tìm GTNN của: $y=\sqrt{a+\cos x}+\sqrt{a+ \sin x}$

Trang trước1...45678...16Trang sau 153050mỗi trang